<span>When one talks about ppm in a liquid solution someone means mg/L so we would not be using the density. This usually means ug/g or mg/kg
0.115 g Na^+ * 10^6 ug/1 g = 115000 ug/g
4.55 L * 1000 mL/1L = 4550 mL
Concentration of Na^+ in ppm:
115000 ug/g /4550 mL = 25.27 pm of sodium ion</span>
Answer:
44 g oxygen are needed.
Explanation:
Given data:
Mass of oxygen needed = ?
Mass of ammonia = 18.2 g
Solution:
Chemical equation:
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will calculate the number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 18.2 g/ 17 g/mol
Number of moles = 1.1 mol
Now we will compare the moles of ammonia with oxygen from balance chemical equation.
NH₃ : O₂
4 : 5
1.1 : 5/4×1.1 = 1.375 mol
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 1.375 mol × 32 g/mol
Mass = 44 g
I believe that the choices for this question are:
C2H4O2, C4H8O4 CH2O, C6H12O6 C3H6O3, C6H12O6 C2H4O2, C6H12O6
The answer to this based on the molar masses given is:
C2H4O2, C6H12O6
To prove calculate the molar mass:
C2H4O2 = 2*12 + 4*1 + 2*16 = 60
C6H12O6 = 6*12 + 12*1 + 6*16 = 180
The expected radius of a nucleus having 82 protons and 125 neutrons would be 5.2 fm.
<h3>
What is a nucleus in the atom?</h3>
The nuclei are incredibly tiny and dense. They are 10 thousand times smaller than an atom and have more than 99.9% of their mass. Protons, which have a positive charge, and neutrons, which have no electrical charge, make up the nucleus. Alternately, protons and neutrons make up an atom's nucleus. While neutrons have no charge but weigh the same as protons, protons have a positive charge that is equivalent to the orbiting electrons. Based on the 1909 Geiger-Marsden gold foil experiment, Ernest Rutherford identified the atomic nucleus in 1911, which is the compact, dense region made up of protons and neutrons at the heart of an atom.
To learn more about the nucleus, visit:
brainly.com/question/23366064
#SPJ4