Answer:
The heat of vaporisation of methanol is "3.48 KJ/Mol"
Explanation:
The amount of heat energy required to convert or transform 1 gram of liquid to vapour is called heat of vaporisation
When 8.7 KJ of heat energy is required to vaporize 2.5 mol of liquid methanol.
Hence, for 1 mol of liquid methanol, amount of heat energy required to evaporate the methanol is = 
= 3.48 KJ
So, the heat of vaporization 
Therefore, the heat of vaporization of methanol is 3.48KJ/Mol
Answer:
From the atmosphere to the hydrosphere by diffusion.
From the atmosphere to the biosphere by photosynthesis.
From the atmosphere to the geosphere by rainfall.
Explanation:
Carbon atom goes from the atmosphere to the hydrosphere by the process of diffusion because there is high concentration of carbondioxide present in the atmosphere. The carbon atom goes from the atmosphere to the biosphere by the process of photosynthesis in plants which uses carbondioxide gas as a raw material in the process for the preparation of organic compounds such as glucose. The carbon atom goes from the atmosphere to the geosphere with the help of rain. When carbondioxide gas react with water in the atmosphere, carbonic acid is formed and comes to the ground through rainfall.
Answer:
3.55atm
Explanation:
We will apply Boyle's law formula in solving this problem.
P1V1 = P2V2
And with values given in the question
P1=initial pressure of gas = 1.75atm
V1=initial volume of gas =7.5L
P2=final pressure of gas inside new piston in atm
V2=final volume of gas = 3.7L
We need to find the final pressure
From the equation, P1V1 = P2V2,
We make P2 subject
P2 = (P1V1) / V2
P2 = (1.75×7.5)/3.7
P2=3.55atm
Therefore, the new pressure inside the piston is 3.55atm
River sources tend to be at the top of mountains or areas of high elevation. This means that rivers impact the entire terrain from mountains to seas and oceans.
I hope this Helps!