Answer:
See explanation
Explanation:
A. Constitutional or structural isomers have the same molecular formula but different structural formulas.
B. Conformational isomers are compounds having the same atom to atom connectivity but differ by rotation about one or more single bonds.
C. Stereo isomers are compounds having the same molecular mass and atom to atom connectivity but different arrangement of atoms and groups in space.
I. Enantiomers are stereo isomers (optical isomers particularly) that are non-superimposable mirror images of each other.
II. Diasteromers are optical isomers that are not mirror images of each other.
Both diasteromers and enantiomers are types of optical isomers which in turn is one of the types of stereo isomers.
Stereo isomers differ from conformational isomers in that the arrangement of atoms in stereo isomers is permanent while conformational isomers results from free rotations in molecules about single bonds.
Answer:
subtract
Explanation:
To find the net force of two bodies going in opposite directions, we must subtract the forces this is because they are not additive forces.
- The net force is the resultant force acting on a body.
- This resultant force is the single force that will produce the same effects as all given forces.
- When forces are directed oppositely on a body, they are subtracted from each other to find the net force.
Answer:
A divergent boundary is when the plates move apart from each other. When the plates part, magma from under either plate rises and forms a volcano. A hotspot is the third place a volcano can form. This particular type is the least common.
Explanation:
The likely thing which happens when two atoms of this element move toward each other is covalent bonding.
<h3>What is Covalent bonding?</h3>
This involves the atoms of element sharing electrons in order to achieve a stable octet configuration.
The element is oxygen which has an atomic number of 8 and needs two electrons to complete its outermost shell which results in the formation of two covalent bonds.
Read more about Covalent bonding here brainly.com/question/3447218
#SPJ1