If one bulb goes out then all the others won't light up because electricity will be cut off. It's a disadvantage because in a parallel circuit if one bulb burns out all the others will still be on because they won't be affected. I hope I've helped you ☺
Answer:
The magnetic force points in the positive z-direction, which corresponds to the upward direction.
Option 2 is correct, the force points in the upwards direction.
Explanation:
The magnetic force on any charge is given as the cross product of qv and B
F = qv × B
where q = charge on the ball thrown = +q (Since it is positively charged)
v = velocity of the charged ball = (+vî) (velocity is in the eastern direction)
B = Magnetic field = (+Bj) (Magnetic field is in the northern direction; pointing forward)
F = qv × B = (+qvî) × (Bj)
F =
| î j k |
| qv 0 0|
| 0 B 0
F = i(0 - 0) - j(0 - 0) + k(qvB - 0)
F = (qvB)k N
The force is in the z-direction.
We could also use the right hand rule; if we point the index finger east (direction of the velocity), the middle finger northwards (direction of the magnetic field), the thumb points in the upward direction (direction of the magnetic force). Hence, the magnetic force is acting upwards, in the positive z-direction too.
Hope this Helps!!!
Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car