Each energy sublevel corresponds to an orbital of a different shape.
Explanation:
Two sublevels of the same principal energy level differs from each other if the sublevels corrresponds to an orbital of a different shape.
- The principal quantum number of an atom represents the main energy level in which the orbital is located or the distance of an orbital from the nucleus. It takes values of n = 1,2,3,4 et.c
- The secondary quantum number gives the shape of the orbitals in subshells accommodating electrons.
- The number of possible shapes is limited by the principal quantum numbers.
Take for example, Carbon:
1s² 2s² 2p²
The second energy level is 2 but with two different sublevels of s and p. They have different shapes. S is spherical and P is dumb-bell shaped .
Learn more:
Quantum number brainly.com/question/9288609
#learnwithBrainly
No
For example a rock was broken into one big and one little piece. The properties of these 2 pieces are still the same even though they have different shapes.
Take into account that in a standing wave, the frequency f of the points executing simple harmonic motion, is simply a multiple of the fundamental harmonic fo, that is:
f = n·fo
where n is an integer and fo is the first harmonic or fundamental.
fo is given by the length L of a string, in the following way:
fo = v/λ = v/(L/2) = 2v/L
becasue in the fundamental harmonic, the length of th string coincides with one hal of the wavelength of the wave.