Answer:
69.8 kilo Pasacl is the pressure of the hydrogen gas.
Explanation:

Pressure at which hydrogen gas collected = p = 101.2 kilo Pascals
Vapor pressure water =
= 31.4 kilo Pascals
The pressure of hydrogen gas = P
The pressure at which gas was collected was sum of vapor pressure of water and hydrogen gas.


69.8 kilo Pasacl is the pressure of the hydrogen gas.
A, because the number of valence shell electrons (outer shell electrons) tells us how much the element or compound wants to bond or give up electrons. Most compounds and elements want to have eight valence ectrons in it's outer ring. So if an atom is far away from having eight, it will want to react more often.
Answer:
The final temperature of the solution is 44.8 °C
Explanation:
assuming no heat loss to the surroundings, all the heat of solution (due to the dissolving process) is absorbed by the same solution and therefore:
Q dis + Q sol = 0
Using tables , can be found that the heat of solution of CaCl2 at 25°C (≈24.7 °C) is q dis= -83.3 KJ/mol . And the molecular weight is
M = 1*40 g/mol + 2* 35.45 g/mol = 110.9 g/mol
Q dis = q dis * n = q dis * m/M = -83.3 KJ/mol * 13.1 g/110.9 gr/mol = -9.84 KJ
Qdis= -9.84 KJ
Also Qsol = ms * Cs * (T - Ti)
therefore
ms * Cs * (T - Ti) + Qdis = 0
T= Ti - Qdis * (ms * Cs )^-1 =24.7 °C - (-9.84 KJ/mol)/[(104 g + 13.1 g)* 4.18 J/g°C] *1000 J/KJ
T= 44.8 °C