1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
4 years ago
13

A ball of mass 1 kg bounces vertically off the floor. Just before hitting the floor its velocity is 10 m/s downward. Just after

hitting the floor its velocity is 8 m/s upward. What is the magnitude of the impulse experienced by the particle in this collision?
Physics
1 answer:
inysia [295]4 years ago
6 0

Answer:

2kgm/s

Explanation:

Impulse is defined as the change in momentum of a body. It is expressed as;

Impulse = mass × change in velocity

Change in velocity = final velocity v - initial velocity u

Impulse = m(v-u)

Given mass of the ball = 1kg

Final velocity v = 8m/s (after hitting the floor)

Initial velocity = 10m/s (before hitting the floor)

Impulse = 1(8-10)

Impulse = -2kgm/s

Magnitude of the impulse experienced by the particle in the collision is 2kgm/s

You might be interested in
Which of the following statements is not true regarding atmospheric pressure?
NISA [10]
When atmospheric pressure is higher than the absolute pressure of a gas in a container.
8 0
3 years ago
Read 2 more answers
A hydrometer is made of a tube of diameter 2.3cm.The mass of the tube and it's content is 80g. If it floats in a liquid density
iris [78.8K]

Answer:

The depth to which the hydrometer sinks is approximately 24.07 cm

Explanation:

The given parameters are;

The diameter of the hydrometer tube, d = 2.3 cm

The mass of the content of the tube, m = 80 g

The density of the liquid in which the tube floats, ρ = 800 kg/m³

By Archimedes' principle, the up thrust (buoyancy) force acting on the hydrometer = The weight of the displaced liquid

When the hydrometer floats, the up-thrust is equal to the weight of the hydrometer which by Archimedes' principle, is equal to the weight of the volume of the liquid displaced by the hydrometer

Therefore;

The weight of the liquid displaced = The weight of the hydrometer, W = m·g

Where;

g = The acceleration due to gravity ≈ 9.81 m/s²

∴ W = 80 g × g

The volume of the liquid that has a mass of 80 g (0.08 kg), V = m/ρ

V = 0.08 kg/(800 kg/m³) = 0.0001 m³ = 0.0001 m³ × 1 × 10⁶ cm³/m³ = 100 cm³

The volume of the liquid displaced = 100 cm³ = The volume of the hydrometer submerged, V_h

V_h = A × h

Where;

A = The cross-sectional area of the tube = π·d²/4

h = The depth to which the hydrometer sinks

h = V_h/A

∴ h = 100 cm³/( π × 2.3²/4 cm²) ≈ 24.07 cm

The depth to which the tube sinks, h ≈ 24.07 cm.

3 0
3 years ago
A player kicks a football from ground level with a velocity of 26.2m/s at an angle of 34.2° above the horizontal. How far back f
Amanda [17]

For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.

For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.

<h3>Explanation</h3>

How long does it take for the ball to reach the goal?

Let the distance between the kicker and the goal be x meters.

Horizontal velocity of the ball will always be 26.2\times\cos{34.2\textdegree} until it lands if there's no air resistance.

The ball will arrive at the goal in \displaystyle \frac{x}{26.2\times\cos{34.2\textdegree}} seconds after it leaves the kicker.

What will be the height of the ball when it reaches the goal?

Consider the equation

\displaystyle h(t) = -\frac{1}{2}\cdot g\cdot t^{2} + v_{0,\;\text{vertical}} \cdot t + h_0.

For this soccer ball:

  • g = 9.81\;\text{m}\cdot\text{s}^{-2},
  • v_{0,\;\text{vertical}} = 26.2\times \sin{34.2\textdegree{}}\;\text{m}\cdot\text{s}^{-2},
  • h_0 = 0 since the player kicks the ball "from ground level."

\displaystyle t=\frac{x}{26.2\times\cos{34.2\textdegree}}

when the ball reaches the goal.

\displaystyle h= - 9.81 \times \frac{x^2}{(26.2\times\cos{34.2\textdegree})^2} + (26.2 \times \sin{34.2\textdegree})\times\frac{x}{26.2\times\cos{34.2\textdegree}} \\\phantom{h} = -\frac{9.81}{(26.2\times\cos{34.2\textdegree})^2}\cdot x^{2} + \frac{\sin{34.2\textdegree}}{\cos{34.2\textdegree}}\cdot x.

Solve this quadratic equation for x, x > 0.

  • x = 65.1 meters when h = 0 meters.
  • x = 6.54 or 58.5 meters when h = 4 meters.

In other words,

  • For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.
  • For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.

3 0
3 years ago
A ski jumper has a mass of 59.6 kg. She is moving with a speed of 23.4 m/s at a height of 44.6 meters above the ground. Determin
Daniel [21]

Hello!

Use the formula:

M = k * p

Data:

M = Mechanic energy

k = Kinetic energy

p = Potencial energy

Descomposing:

M = (0,5*mv²) + (mgh)

Replacing:

M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)

M = 16317,28 J + 26076,54 J

M = 42393,82 J

The mechanic energy is <u>42393,82 Joules.</u>

7 0
3 years ago
The intensity of light from a star varies inversely as the square of the distance. If you lived on a planet ten times farther aw
frosja888 [35]

Answer:

the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.

That is,

Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100

Explanation:

Let the intensity of light be represented by I

Let the distance of the star be d

I ∝ (1/d²)

I = k/d²

For the earth,

Iₑ = k/dₑ²

k = Iₑdₑ²

For the other planet, let intensity be Iₒ and distance be dₒ

Iₒ = k/dₒ²

But dₒ = 10dₑ

Iₒ = k/(10dₑ)²

Iₒ = k/100dₑ²

But k = Iₑdₑ²

Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100

Iₒ = Iₑ/100

Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.

3 0
4 years ago
Other questions:
  • A crane dose 62500 joules of work to lift the boulder distance of 25 meters how much does the boulder way
    11·2 answers
  • How could a sedimentary rock provide evidence that the rock cycle exists?\?
    6·1 answer
  • Describe how unbalanced &amp; balanced forces are different and how this impacts on motion.
    7·1 answer
  • You create a plot of voltage (in V) vs. time (in s) for an RC circuit as the capacitor is charging, where V=V_{0} \cdot \left(1-
    11·1 answer
  • Using a streak test on a mineral that is harder than 7 on Mohs scale would not be very useful True or False
    11·1 answer
  • The volume of a container is 40 cm 3 . It has a length of 4 cm, a width of 2 cm. What is the height of the container?
    8·1 answer
  • Which event causes the formation of trenches in Earth’s crust?
    6·2 answers
  • When you see an object that is not a light source, you are seeing light waves ___ by the object
    8·1 answer
  • A stone tumbles into a mine shaft strikes bottom after falling for 3.8 seconds. How deep is the mine shaft
    11·1 answer
  • A+B A=3i+4j-k B=5i+6j+2k​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!