The Doppler Effect provides the equation for the
calculation of apparent frequency:
f=fo[vo/(vo-vr)]
where:<span>
vo=source wave velocity
vr=relative speed between source and observer
f=apparent frequency
fo=source frequency </span>
<span>
The velocity of the doppler wave is
v=λf</span>
where λ is light wavelength. Hence,
v=λfo[vo/(vo-vr)]
Based on the equation, we can say that wave
velocity will always be defined by one and only one wavelength.
Therefore the answer is letter C.
<span> </span>
I believe the acceleration would be 5m/s
All you would need to do is divide the final speed by the time it took to get there. I am only about 80 sure this answer is correct, so take my advise only if you feel comfortable.
Because,
In left image pin is not touch to the wire.
In right image pin is touch to the wire.
Hope it helps you.....
Plz...Plz...Plz...Plz…Plz…
Mark be Brainliest.....
Please.....
And..
Please thanks me.....
Plz.....Plz.....
Answer:
0.1
Explanation:
mass, m = 5 kg
θ = 60°
Force, F = 10 N
velocity is constant , it means the net force is zero.
So, the component of force along the surface is equal to the friction force
FCosθ = friction force
10 x cos 60 = μ x m x g
where, μ is the coefficient of friction
5 = μ x 5 x 9.8
μ = 0.1
Thus, the coefficient of friction is 0.1
What is the kinetic energy of the system after the collision?

How this is calculated?
Given:
Initial speed=
mass of rod=M
Let, Initial kinetic energy =
Final kinetic energy=
Moment of inertia =I
What is the moment of inertia?

What is the angular momentum?
By conservation of angular momentum,


We know that, the final kinetic energy is given by,

What is the kinetic energy?
- In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
- It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity.
- Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
To know more about kinetic energy, refer:
brainly.com/question/114210
#SPJ4