I think it could be D please tell me if I’m wrong I hope you have a wonderful day ❤️
Answer:
We will have <u>infinite solutions </u>to the system of linear equations.
Explanation:
Well, when we have two lines with the <u>same slopes and the same y-interception</u>, both of them <u>are overlapped, </u>so we will have <u>infinite solutions </u>to the system of linear equations.
This kind of system is called <u>dependent system.</u>
I hope it helps you!
Answer:
2.5 * 10^-3
Explanation:
<u>solution:</u>
The simplest solution is obtained if we assume that this is a two-dimensional steady flow, since in that case there are no dependencies upon the z coordinate or time t. Also, we will assume that there are no additional arbitrary purely x dependent functions f (x) in the velocity component v. The continuity equation for a two-dimensional in compressible flow states:
<em>δu/δx+δv/δy=0</em>
so that:
<em>δv/δy= -δu/δx</em>
Now, since u = Uy/δ, where δ = cx^1/2, we have that:
<em>u=U*y/cx^1/2</em>
and we obtain:
<em>δv/δy=U*y/2cx^3/2</em>
The last equation can be integrated to obtain (while also using the condition of simplest solution - no z or t dependence, and no additional arbitrary functions of x):
v=∫δv/δy(dy)=U*y/4cx^1/2
=y/x*(U*y/4cx^1/2)
=u*y/4x
which is exactly what we needed to demonstrate.
Also, using u = U*y/δ in the last equation we can obtain:
v/U=u*y/4*U*x
=y^2/4*δ*x
which obviously attains its maximum value for the which is y = δ (boundary-layer edge). So, finally:
(v/U)_max=δ^2/4δx
=δ/4x
=2.5 * 10^-3
Explanation:
It is given that,
Speed of the sports car, v = 85 mph = 37.99 m/s
The radius of curvature, r = 525 m
Let
is the normal weight and
is the apparent weight of the person. Its apparent weight is given by :

So, 



or

Hence, this is the required solution.
This question involves the concept of kinetic energy.
The student's claim is "right".
<h3>Kinetic Energy</h3>
The energy possessed by a body, by the virtue of its motion is called kinetic energy. Mathematically it is given by the following formula:

where,
- K.E = Kinetic energy
- m = mass
- v = velocity
Therefore,
For the paintball:

K.E = 16200 J
For the pellet:

K.E = 16200 J
Hence, both paintball and pellet will have same kinetic energy. The student is right.
Learn more about kinetic energy here:
brainly.com/question/12669551
#SPJ1