Answer:
Acceleration is 12m/s^2
Explanation:
We have a resultant force of 10N to the right and a resultant of 4N to the left, since the tow forces are acting in opposite directions, we subtract the two forces to find the net force. The net force would be 6N to the right.
We also know that F=ma, where F=force, m=mass, and a=acceleration
we can rearrange the equation like this,
a=F/m
now we can plug in the known variables
a=6N/0.5kg
a=12m/s^2
It take <u>approximately 29</u><u>.</u><u>5 </u><u>days</u> for moon to do its entire set of phases.
<h3>Explanation</h3>
The Moon is the only natural satellite of the Earth which undergoes three motions, that is :
- Rotating on its own axis
- Evolving around the Earth
- Together with the Earth evolving around the sun as the center of the solar system
With that, the moon has two periods of revolution, namely:
- Sidereal revolution, which is the original revolution of the Moon. This sidereal revolution is really the time it takes the Moon to orbit the Earth. The sidereal revolution of the moon has a time span of <u>27.3 days</u> or more accurate is approximately 27 days, 7.72 hours.
- Synodic revolution, namely the revolution of the Moon as seen from Earth as a series of moon phases (from the new moon phase, to the next new moon phase). The synodic revolution is slower, because the Moon needs to catch up with the Earth rotating in the same direction as the Moon. The synodic revolution of the moon has a time span of 29.5 days or to be more accurate approx 29 days, 12.734 hours.
Answer:
When net force of zero acting on a ball which is at rest , then the object center of mass will not accelerate , but the object may begin to rotate .
Explanation:
Here when there is an object where several forces are acing upon are zero then the center of mass will not accelerate because we know that

Where
acceleration of center of mass
= net force = 0
So the acceleration of center of mass will be zero
But the torque ,may not be zero as torque is product of individual force and perpendicular force .
Since if torque is not equal to zero then the object may begin to rotate
Answer:
As per Coulomb's law we know that force between two charges is given as
F = \frac{kq_1q_2}{r^2}F=
r
2
kq
1
q
2
here we know that
q_1 = 2.5 \times 10^{-6} Cq
1
=2.5×10
−6
C
q_2 = -5.0 \times 10^{-6} Cq
2
=−5.0×10
−6
C
r = 0.0050 mr=0.0050m
now from above formula we will have
F = \frac{(9 \times 10^9)(2.5 \times 10^{-6})(5 \times 10^{-6})}{(0.0050)^2}F=
(0.0050)
2
(9×10
9
)(2.5×10
−6
)(5×10
−6
)
F = 4500 NF=4500N
so they will attract towards each other as they are opposite in nature with force F = 4500 N