Answer:
70m/s²
Explanation:
we will use the first equation of Dalton to find it
When t=2, the ball has fallen d(2) = 16 (2²) = 64 feet .
When t=5, the ball has fallen d(5) = 16 (5²) = 400 feet .
Distance fallen from t=2 until t=5 is (400 - 64) = 336 feet.
Time period between t=2 until t=5 is (5 - 2) = 3 seconds.
Average speed of the ball from t=2 until t=5 is
(distance covered) / (time to cover the distance)
= 336 feet / 3 seconds = 112 feet per second.
That's what choice-C says.
Given what we know, despite not having the figure attached to the question, we can still confirm that the magnitude for the acceleration of the dancer will be zero.
<h3>Why is the dancer's acceleration equal to zero?</h3>
This has to do with how the question clarifies the speed of the dancer. Though it does not give us an exact value, we are told that the speed is constant. This is an indicator that the acceleration is zero because with any other value for acceleration the speed <u>cannot remain</u> constant.
Therefore, given that any value for acceleration will increase or decrease the speed of the dancer, but we are told that the dancer's speed is constant throughout the trip, we can confirm that the magnitude for the acceleration of the dancer is zero.
To learn more about acceleration visit;
brainly.com/question/12134554?referrer=searchResults
Answer:
The main types of nucleons are protons and neutrons. A proton, as its name suggests, has a positive electric charge, and a neutron has a neutral electric charge (meaning that it has no charge). The two in the nucleus of the atom make a positive charge, since the neutron has no charge at all.
Explanation:
Answer:
10.53m/s²
Explanation:
Centripetal acceleration is the acceleration of an object about a circle. The formula for calculating centripetal acceleration is expressed by:

v is the velocity of the car = 24.5m/s
r is the radius of the track = 57.0m
Substitute the given values into the formula:

Hence the centripetal acceleration of the race car is 10.53m/s²