Answer:
It's constant everywhere in its trajectory.
Explanation:
the projectile was launched with an initial velocity, the only acceleration that is affecting the projectile's velocity is gravity.
The acceleration of gravity is practically equal everywhere on earth, so during its trajectory, we have to take into consideration only the acceleration because of gravity.
This is only correct because the projectile was launched with an initial velocity and it's not accelerating from rest and then falls.
Answer:0.3
Explanation:
Given
velocity of car=15 m/s
truck brought to halt in a distance of 38 m
We know

Final velocity (v)=0


(deceleration)
Therefore minimum coefficient of friction \mu will be


Answer:
34.3 m/s
Explanation:
Newton's Second Law states that the resultant of the forces acting on the car is equal to the product between the mass of the car, m, and the centripetal acceleration
(because the car is moving of circular motion). So at the top of the hill the equation of the forces is:

where
(mg) is the weight of the car (downward), with m being the car's mass and g=9.8 m/s^2 is the acceleration due to gravity
R is the normal reaction exerted by the road on the car (upward, so with negative sign)
v is the speed of the car
r = 0.120 km = 120 m is the radius of the curve
The problem is asking for the speed that the car would have when it tires just barely lose contact with the road: this means requiring that the normal reaction is zero, R=0. Substituting into the equation and solving for v, we find:

Answer:
C. Count the atoms in each substance in the reactants and products.
Explanation:
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
In order for a chemical equation to be balanced, the condition which must be met is that the number of atoms in the reactants equals the number of atoms in the products.
This ultimately implies that, the mass and charge of the chemical equation are both balanced properly.
In Chemistry, all chemical equation must follow or be in accordance with the Law of Conservation of Mass, which states that mass can neither be created nor destroyed by either a physical transformation or a chemical reaction but transformed from one form to another in an isolated (closed) system.
One of the step used for balancing chemical equations is to count the atoms in each substance in the reactants and products.
For example;
NH3 + O2 -----> NO + H2O
The number of atoms in each chemical element are;
For the reactant side:
Nitrogen, N = 1
Hydrogen, H = 3
Oxygen, O = 2
For the product side;
Nitrogen, N = 1
Hydrogen, H = 2
Oxygen, O = 2
When we balance the chemical equation, we would have;
NH3 + 3O2 -----> 4NO + 2H2O
Answer: heat to mechanical to electrical
Explanation: