Answer:
y=27x
Step-by-step explanation:
If Buddy makes 15 toys per hour we can use the expression [15x=y] (let x be # of hours worked). If Bubbles makes 12 toys per hour we can use the expression [12x=y]. To find out the number of toys they make together we can just find the total number of toys they make in an hour. (Combine the 2 equations).
15x+12x=y
27x=y
Answer:
At least 75% of these commuting times are between 30 and 110 minutes
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by
.
In this question:
Mean of 70 minutes, standard deviation of 20 minutes.
Since nothing is known about the distribution, we use Chebyshev's Theorem.
What percentage of these commuting times are between 30 and 110 minutes
30 = 70 - 2*20
110 = 70 + 2*20
THis means that 30 and 110 minutes is within 2 standard deviations of the mean, which means that at least 75% of these commuting times are between 30 and 110 minutes
ANSWER:
STEP BY STEP EXPLANATION:
<h3>
<u>Answer:</u></h3>

<h3>
<u>Step-by-step explanation:</u></h3>
A inequality is given to us and we need to convert it into standard form and see whether if it has a solution . So let's solve the inequality.
The inequality given to us is :-

Let's plot a graph to see its interval . Graph attached in attachment .
Now we can see that the Interval notation of would be ,
![\boxed{\boxed{\orange \tt \purple{\leadsto}y \in [-2,-1] }}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Corange%20%5Ctt%20%5Cpurple%7B%5Cleadsto%7Dy%20%5Cin%20%5B-2%2C-1%5D%20%7D%7D)
<h3>
<u>Hence</u><u> the</u><u> </u><u>standa</u><u>rd</u><u> </u><u>form</u><u> </u><u>of</u><u> </u><u>inequa</u><u>lity</u><u> </u><u>is</u><u> </u><u>y²</u><u>+</u><u>3y</u><u> </u><u>+</u><u>2</u><u> </u><u>≤</u><u> </u><u>0</u><u> </u><u>and</u><u> </u><u>the </u><u>Solution</u><u> </u><u>set</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>ineq</u><u>uality</u><u> </u><u>is</u><u> </u><u>[</u><u> </u><u>-</u><u>2</u><u> </u><u>,</u><u> </u><u>-</u><u>1</u><u> </u><u>]</u><u> </u><u>.</u></h3>