<span>Lithium has a property
of high reactivity and to obtain lithium is through electrolysis of its fused
salts. Because lithium is very reactive, it is not found free so electrolysis
is use to split it apart to get it. Moreover,
Lithium is an alkali metal with single valence electron that is easily given up
to form cation, which make it a good conductor of heat and electricity.</span>
<span> </span>
Answer:
157.79 g
Explanation:
The definition of molality is:
- molality = moles of solute / kilogram of solvent
This means that in a 2.7 molal solution, there are 2.7 moles of NaCl per kilogram of water.
So now w<u>e convert those 2.7 moles of NaCl to grams</u>, using its <em>molar mass</em>:
- 2.7 mol * 58.44 g/mol = 157.79 g
D. the potential energy of the reactants is low; the potential energy decreases gradually; then increases slightly.
This is called drawing conclusions as once they are done w research, they can comprehend the subject in order to predict what may happen under the circumstances.
Answer:
Entropy increases
Explanation:
Entropy (S) is a measure of the degree of disorder. For a given substance - say water - across phases the following is true ...
S(ice) < S(water) << S(steam)
For a chemical process, entropy changes can be related to increasing or decreasing molar volumes of gas from reactant side of equation to product side of equation. That is ...
if molar volumes of gas increase, then entropy increases, and
if molar volumes of gas decrease, then entropy decreases.
For the reaction 2KClO₃(s) => 2KCl(s) + 3O₂(g)
molar volumes of gas => 0Vm* 0Vm 3Vm
*molar volumes (Vm) apply only to gas phase substances. Solids and liquids do not have molar volume.
Since the reaction produces 3 molar volumes of O₂(g) product vs 0 molar volumes of reactant, then the reaction is showing an increase in molar volumes of gas phase substances and its entropy is therefore increasing.