Based on the ionization energy levels of element 3, one can tell that the element is Magnesium. Magnesium has an atomic number of
12 so in a neutral atom, that means that there are 12 protons and 12 electrons. So based on the electrons, we can write the electronic configuration as:
The chemical formula of a carbonate ion is CO3^2-. It is an AX3 system which means it take the trigonal planar shape. There would be two single bonds of C-O and one double bond C-O in order for C to agree with the octet rule. Two minus charges are equally distributed to the three oxygen atoms so that each oxygen of the carbonate ion would have a charge of negative 2/3.
To solve this we use the
equation,
<span> M1V1 = M2V2</span>
<span> where M1 is the
concentration of the stock solution, V1 is the volume of the stock solution, M2
is the concentration of the new solution and V2 is its volume.</span>
<span>2.0 M x V1 = 0.50 M x 200 mL</span>
<span>V1 = 50 mL needed</span>
E. co and n2Effusion is the process where gas escapes through a hole. Gases with a lower molecular mass effuse more speedy than gases with a higher molecular mass. R<span>elative rates of effusion is related to the molecular mass.
a) M(N</span>₂)/M(O₂) = 28/32 = 0,875
b) M(N₂O)/M(NO₂) = 44/46 = 0,956
c) M(CO)/M(CO₂) = 28/44 = 0,636
d) M(NO₂)/M(N₂O₂) = 44/58= 0,758
e) M(CO)/M(N₂) = 28/28 = 1, <span>CO and N</span>₂ <span>have iexact molecular masses and will effuse at nearly identical rates.</span>
Answer: 7.98 grams of
are produced if 10.7 grams of
are reacted.
Explanation:
To calculate the number of moles, we use the equation:
.....(1)
Putting values in equation 1, we get:
The chemical equation for the reaction is
By Stoichiometry of the reaction:
2 moles of
produce = 1 mole of
So, 0.100 moles of
produce=
of
Mass of
=
Hence 7.98 grams of
are produced if 10.7 grams of
are reacted.