Your answer would be an Element can't be separated into simpler substances or converted into another substance by chemical process.
Hope that helps!!!
Answer:
At equilibrium, reactants predominate.
Explanation:
For every reaction, the equilibrium constant is defined as the ratio between the concentration of products and reactants. Thus, for the reaction N2 (g) + O2 (g) ⇌ 2NO the expression of its equilibrium constant is:
![Keq = \frac{[NO]^{2}}{[O_{2} ][N_{2}]}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BO_%7B2%7D%20%5D%5BN_%7B2%7D%5D%7D)
Since the equilibrium constant is Keq = 4.20x10-31 the concentration of reactants O2 and N2 must be much higher than products to obtain such a small number as 4.20x10-31 at the equilibrium. Hence, at equilibrium reactants predominate.
The correct answer is option 2. A 0.8 M aqueous solution of NaCl has a higher boiling point and a lower freezing point than a 0.1 M aqueous solution of NaCl. This is explained by the colligative properties of solutions. For the two properties mentioned, the equation for the calculation of the depression and the elevation is expressed as: ΔT = -Km and <span>ΔT = Km, respectively. As we can see, concentration and the change in the property has a direct relationship.</span>
Answer: 3.024 g grams of hydrogen are needed to convert 76 grams of chromium(III) oxide, 
Explanation:
The reaction equation for given reaction is as follows.

Here, 1 mole of
reacts with 3 moles of
.
As mass of chromium (III) oxide is given as 76 g and molar mass of chromium (III) oxide
is 152 g/mol.
Number of moles is the mass of substance divided by its molar mass. So, moles of
is calculated as follows.

Now, moles of
.given by 0.5 mol of
is calculated as follows.

As molar mass of
is 2.016 g/mol. Therefore, mass of
is calculated as follows.

Thus, we can conclude that 3.024 g grams of hydrogen are needed to convert 76 grams of chromium(III) oxide,
.