The granite block transferred <u>4080 J</u> of energy, and the mass of the water is <u>35.8 g</u>.
1. <em>Energy from granite block
</em>
The formula for the heat (<em>q</em>) transferred is
<em>q = mC</em>Δ<em>T</em>
<em>m</em> = 126.1 g; <em>C</em> = 0.795 J·°C⁻¹g⁻¹; Δ<em>T</em> = <em>T</em>_f – <em>T</em>_i = 51.9 °C - 92.6 °C = -40.7 °C
∴ <em>q</em> = 126.1 g × 0.795 J·°C⁻¹g⁻¹ × (-40.7 °C) = -4080 J
The granite block transferred 4080 J.
2. <em>Mass of water
</em>
<em>q = mC</em>Δ<em>T
</em>
<em>m = q</em>/(<em>C</em>Δ<em>T</em>)
<em>q </em>= 4080 J; <em>C</em> = 4.186 J·°C⁻¹g⁻¹; Δ<em>T</em> = <em>T</em>_f – <em>T</em>_i = 51.9 °C – 24.7 °C = 27.2 °C
∴ <em>m</em> = 4080 J/(4.186 J·°C⁻¹g⁻¹ × 27.2 °C) = 35.8 g
The mass of the water is 35.8 g.
The answer is; Cosmic background radiation is leftover thermal energy from the big bang.
Called the coming microwave background the weak radiation fills the universe more or less uniformly. This radiation is the fossil remnants of the postulated big band at the beginning of the universe. The photos produced at the time continue to travel through the universe growing fainter over time and have fallen in the microwave range of the electromagnetic spectrum now.
The volume occupied by the gas in the container is 1 m³
Boyles law applies
P₁ V₁ = P₂ V₂
Where P₁ = 200kpa
P₂ = 300kpa
if its initial volume is 1.5
then,
P₁ V₁ = P₂ V₂
200 × 1.5 = 300 × V₂
V₂ = 200 × 1.5 / 300
= 1 m³
Hence the volume occupied by the gas container is 1 m³
Learn more about the Boyles law on
brainly.com/question/13759555
#SPJ4
A first-order reaction is 81omplete in 264s.The half-life for this reaction (i) t 1/2 = =3.465×10 −3 s.to reach 95% Completion = 285 s.
To measure reaction rates, chemists initiate the reaction, measure the concentration of the reactant or product at different times as the reaction progresses,
For a 0-order response, the mathematical expression that may be employed to determine the half of life is: t1/2 = [R]0/2k. For a first-order reaction, the half of-existence is given by: t1/2 = zero.693/ok. For a 2d-order response, the method for the half-life of the response is: 1/okay[R]0
The 1/2-life of a response (t1/2), is the quantity of time needed for a reactant concentration to lower via half of compared to its initial awareness. Its software is used in chemistry and medicine to are expecting the awareness of a substance over time
Half of the lifestyles is the time required for exactly 1/2 of the entities to decay 50%.
Learn more about first order reaction here:-
#SPJ4
P1V1 = P2V2
P1 = 720 mmHg
V1 = 450. mL
P2 = 760 mmHg (this is the pressure at STP)
Use these to solve for V2:
(720)(450) = 760V2
V2 = 426 mL