<em>friction transforms KE into thermal energy (a)</em>
That's why, if it goes on long enough, the moving object actually gets warm.
Combination or composition, in particular.
Answer:
196
Explanation:
subtract 24 from 220 to get your answer.
Recall that

where
and
are the initial and final velocities, respecitvely;
is the acceleration; and
is the change in position.
So we have


(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²