ANSWER

EXPLANATION
Parameters given:
Mass of car, mc = 1103 kg
Mass of truck, mt = 4919 kg
Initial velocity of car, uc = 18 m/s
Inital velocity of truck = 0 m/s
To solve this problem, we have to apply the law of conservation of momentum, which states that the total momentum of a system is constant.
This implies that:

Since the car and the truck stick together after the collision, they will have the same final velocity.
Hence:

Substitute the given values and solve for v (final velocity):

That is the final velocity of the two-vehicle mass.
Would love to help you but there are no options for me to choose from
Only velocity uses direction of travel in its calculations.
The choices are confusing. Air, oil, and alcohol are fluids at any reasonable temperature. Dry cement is not.
Answer:
h f = Wf + K
where the total energy available is h f, Wf is the work function or the work needed to remove the electron and K is the kinetic energy of the removed electron
If K = zero then hf = Wf
Wf = h f = h c / λ or
λ = h c / Wf = 6.63E-34 * 3.0E8 / (3.7 * 1.6E-19)
λ = 6.63 * 3 / (3.7 * 1.6) E-7 = 3.36E-7
This would be 3360 angstroms or 336 millimicrons
Visible light = 400-700 millimicrons