Answer:
a) K = 49.5 J b) k = 1378 N / m c) ΔE = 34 J d) μ = 0.399
Explanation:
For this exercise we will use the concepts of energy
a) The initial kinetic energy is
K = ½ m v²
K = ½ 3.96 5²
K = 49.5 J
b) let's use energy conservation
Em₀ = K = ½ m v²
= Ke = ½ k x²
Em₀ = 
½ m v² = ½ k x²
k = m v² / x²
k = 3.96 5² / 0.268²
k = 1378 N / m
c) Let's calculate the final energy of the spring
= Ke = ½ k x²
= ½ 1378 0.15²
= 15.5 J
The initial energy is the kinetics of the block
Em₀ = 49.5 J
The lost energy is the difference with the initial
ΔE =
- Em₀
ΔE = 15.5 - 49.5
ΔE = - 34 J
the negative sign means that the energy dissipates
d) For this part we use the concept of work
W = F d cos θ = ΔK
In this case the force is the friction force that always opposes displacement, so the angle 180 ° and cos 180 = -1
W = -fr d = ΔK
The force of friction is
fr = μ N
With Newton's second law
N-w = 0
N = W = mg
Let's calculate
-μ mg d = Kf -K₀o
μ = K₀ / mgd
μ = 49.5 / (3.96 9.8 3.20)
μ = 0.399
I believe the answer is 40,000 Hz to 100,000 Hz
Answer:
A centripetal force is a net force that acts on an object to keep it moving along a circular path
Answer:
Δt = 5.29 x 10⁻⁴ s = 0.529 ms
Explanation:
The simple formula of the distance covered in uniform motion can be used to find the interval between when the sound arrives at the right ear and the sound arrives at the left ear.

where,
Δt = required time interval = ?
Δs = distance between ears = 18 cm = 0.18 m
v = speed of sound = 340 m/s
Therefore,

<u>Δt = 5.29 x 10⁻⁴ s = 0.529 ms</u>
Your mass will never change despite if you go to Jupiter, Uranus, Mars, Earth, or any planet.