1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
muminat
3 years ago
14

Maxwell’s theory of Electromagnetism in 1865 was the first "unified field theory" _________ no further theory has united the ele

ctroweak field with either the Strong (Hadronic) force or Gravity.A. with Electroweak in 1961 only being the other, becauseB. with Electroweak in 1961 being the only other, becauseC. and Electroweak in 1961 only was the other, becauseD. and Electroweak in 1961 only being the other, asE. and Electroweak in 1961 the only other, as
Physics
1 answer:
Andrei [34K]3 years ago
6 0

Answer: E.  and Electroweak in 1961 the only other, as

Explanation:

This is more an English grammar question than a physics question, so taking that perspective, one should look for the answer that best completes the sentence.

Based on the word "first" in the sentence, implying the need for a conjunction to join the two theories and the last part of the sentence does not give a reason but further supports the determination of the theory being the first unified theory.

So, to complete the sentence, the best option is;

Maxwell’s theory of Electromagnetism in 1865 was the first "unified field theory" and Electroweak in 1961 the only other, as no further theory has united the electroweak field with either the Strong (Hadronic) force or Gravity.

You might be interested in
a baseball is hit 3 feet above ground level at 100 feet per second and at an angle of 45 with respect to the ground. (g=32 feet/
LiRa [457]

Answer:

hmax=81ft

Explanation:

Maximum height of the object is the highest vertical position along its trajectory.

The vertical velocity is equal to 0 (Vy = 0)

0=V_{y}-g*t=v_{0}*sin(\alpha)-g*th\\

we isolate th (needed to reach the maximum height hmax)

th = \frac{v_{0}*sin(\alpha)}{g}

The formula describing vertical distance is:

y = Vy * t-g* t^{2} / 2

So, given y = hmax and t = th, we can join those two equations together:

hmax = Vy* th-g*th^{2}/2

hmax =Vo^{2}*sin(\alpha )^{2}/(2*g)

if we launch a projectile from some initial height h all you need to do is add this initial elevation

hmax =h+Vo^{2}*sin(\alpha)^{2}/(2*g)

hmax =3+100^{2}*sin(45)^{2}/(2 * 32)=81 ft

6 0
3 years ago
Did i get any of these answers right if not what do i have to change
gregori [183]

Answer:

You got them right

8 0
3 years ago
Reflection of the images example
NISA [10]

Answer:

reflection of water ,sound and water waves etc

8 0
3 years ago
A 97.6-kg baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is μk =
Mila [183]

Answer:

v=6.65m/sec

Explanation:

From the Question we are told that:

Mass m=97.6

Coefficient of kinetic friction  \mu k=0.555

Generally the equation for Frictional force is mathematically given by

 F=\mu mg

 F=0.555*97.6*9.8

 F=531.388N

Generally the  Newton's equation for Acceleration due to Friction force is mathematically given by

 a_f=-\mu g

 a_f=-0.555 *9.81

 a_f=-54455m/sec^2

Therefore

 v=u-at

 v=0+5.45*1.22

 v=6.65m/sec

4 0
3 years ago
The moment of inertia of a uniform-density disk rotating about an axle through its center can be shown to be . This result is ob
Naddik [55]

(a) 0.2888 kg m^2

The moment of inertia of a uniform-density disk is given by

I=\frac{1}{2}MR^2

where

M is the mass of the disk

R is its radius

In this problem,

M = 16 kg is the mass of the disk

R = 0.19 m is the radius

Substituting into the equation, we find

I=\frac{1}{2}(16 kg)(0.19 m)^2=0.2888 kg m^2

(b) 142.5 J

The rotational kinetic energy of the disk is given by

K=\frac{1}{2}I\omega^2

where

I is the moment of inertia

\omega is the angular velocity

We know that the disk makes one complete rotation in T=0.2 s (so, this is the period). Therefore, its angular velocity is

\omega=\frac{2\pi}{T}=\frac{2\pi}{0.2 s}=31.4 rad/s

And so, the rotational kinetic energy is

K=\frac{1}{2}(0.2888 kg m^2)(31.4 rad/s)^2=142.5 J

(c) 9.07 kg m^2 /s

The rotational angular momentum of the disk is given by

L=I\omega

where

I is the moment of inertia

\omega is the angular velocity

Substituting the values found in the previous parts of the problem, we find

L=(0.2888 kg m^2)(31.4 rad/s)=9.07 kg m^2 /s

8 0
3 years ago
Other questions:
  • What is the main difference between protons and neutrons?
    12·2 answers
  • The Statue of Liberty is made of copper that has turned green because it had undergone a change. What can be said about this cha
    12·2 answers
  • Which force acts as an object to move it from rest or a constant straight line motion
    7·2 answers
  • A solid conducting sphere has net positive charge and radius r = 0.800 m . At a point 1.20 m from the center of the sphere, the
    11·1 answer
  • Acceleration equation physics
    8·2 answers
  • _____ replacement involves one element replacing another element in a compound.
    12·1 answer
  • PLEASE ILL GIVE BRAINLIST Which term describes the high point of a transverse wave?
    13·1 answer
  • As wavelength decreases, frequency and energy _________________;
    10·1 answer
  • Write down the principals of them lever in points .​
    12·1 answer
  • Dos cargas puntuales q1 = −50μC y q2 = +30μC se encuentran
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!