Answer:
y = -2x + 3 is the required equation
Step-by-step explanation:
From the graph we will get two ordered pairs
If we see that When x=0 then y=3 and when x = 1 then y=1
Now from this we can find the slope of the Graph
So slope of graph = (y2 - y1) / (x2-x1)
=(1-3) / (1-0)
=-2
So
Slope = m = -2
Now the equation is
y = mx + b
We have to find the value of b
as we have two ordered pairs we can take any of it to find the value of b because line passes through those points
taking (0,3) as a point
y= mx + b
put values
3 = -2*(0) + b
so
b=3
Now the equation of the line in this form is
y = mx + b
which is
y = -2x + 3
The correct answer to your question is number 2
8. It is divisible by both 32 and 40.
We will first calculate ∠A:
∠∠A = 180° - ( 105° + 20 ° ) = 180° - 125° = 55°
Then we will use the Sine Law:
15 / sin 55° = AB / sin 20°
15 / 0.81915 = AB / 0.342
AB · 0.81915 = 15 · 0.342
AB · 0.81915 = 5.13
AB = 5.13 : 0.81915
AB = 6.26 ≈ 6.3 miles
Answer: The distance between the locations A and B is 6.3 miles.
Answer:
1) (x + 3)(3x + 2)
2) x= +/-root6 - 1 by 5
Step-by-step explanation:
3x^2 + 11x + 6 = 0 (mid-term break)
using mid-term break
3x^2 + 9x + 2x + 6 = 0
factor out 3x from first pair and +2 from the second pair
3x(x + 3) + 2(x + 3)
factor out x+3
(x + 3)(3x + 2)
5x^2 + 2x = 1 (completing squares)
rearrange the equation
5x^2 + 2x - 1 = 0
divide both sides by 5 to cancel out the 5 of first term
5x^2/5 + 2x/5 - 1/5 = 0/5
x^2 + 2x/5 - 1/5 = 0
rearranging the equation to gain a+b=c form
x^2 + 2x/5 = 1/5
adding (1/5)^2 on both sides
x^2 + 2x/5 + (1/5)^2 = 1/5 + (1/5)^2
(x + 1/5)^2 = 1/5 + 1/25
(x + 1/5)^2 = 5 + 1 by 25
(x + 1/5)^2 = 6/25
taking square root on both sides
root(x + 1/5)^2 = +/- root(6/25)
x + 1/5 = +/- root6 /5
shifting 1/5 on the other side
x = +/- root6 /5 - 1/5
x = +/- root6 - 1 by 5
x = + root6 - 1 by 5 or x= - root6 - 1 by 5