Answer:
The positively charged ball moves between both charged plates till the plates and the ball all become neutral.
Check Explanation for more.
Explanation:
Let the ball be in square brackets, and the plates in normal brackets.
(+) [+] (-)
From the law that like charges repel and unlike charges attract.
The positive ball would go first to the negatively charged plate. After which, the ball would hold more negative charges overall than before.
Because the ball is now more negatively charged, it then travels towards the positive plate. In the same manner, the ball would transfer negative electrons to the positive plate.
So, when leaving the positive plate, the ball would be more positive and be drawn towards the negative plate once more. In doing so, it would make the negative plate more positive.
Then, the ball again holds more negative electrons and is drawn towards the positive plate once more.
This back and forth process continues until the once-positive and once-negative plates become neutral, that is, they are discharged.
The ball hanging on the insulated thread becomes neutral too at this point.
Hope this Helps!!!
Answer:
8400m
Explanation:
The engine that falls off would have the same constant horizontal velocity as the airplane's when if falls off if we ignore air resistance. So it would have a horizontal velocity of 280m/s for 30seconds before it hits the ground.
Therefor the horizontal distance the engine travels during its fall is
280 * 30 = 8400m
Answer:
False
Explanation:
Because when you go through east
( +x axis ) then you go to west ( -x axis )
You will subtract -9 from +15
it's become +6
( I talk about the displacement not distance) ( West = - East )
I hope that it's a clear ") .
Answer:
2.2 s
Explanation:
Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point = mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)
So, T = 2π√(I/mgh)
T = 2π√(mL²/3 /mgL/2)
T = 2π√(2L/3g)
substituting the values of the variables into the equation, we have
T = 2π√(2L/3g)
T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))
T = 2π√(3.66 m/(29.4 m/s² ))
T = 2π√(0.1245 s² ))
T = 2π(0.353 s)
T = 2.22 s
T ≅ 2.2 s
So, the period of the man's leg is 2.2 s