Force between two charges =
( 1/4πε₀ ) · (Charge #1) · (Charge #2) / (Distance between them)²
in the direction away from each other.
In other words, if the force is positive, the charges are repelling.
If the force is negative, the charges are attracting.
A particle confined to move along a curved path has only one degree of freedom. inclined plane are some examples of constrained motion. Every condition of constraint reduces the number of degree of freedom by one.
I hope this helps!
During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be <em><u>a group</u></em> of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it.
Answer:
A police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase.
Explanation:
In Physics, Doppler effect can be defined as the change in frequency of a wave with respect to an observer in motion and moving relative to the source of the wave.
Simply stated, Doppler effect is the change in wave frequency as a result of the relative motion existing between a wave source and its observer.
The term "Doppler effect" was named after an Austrian mathematician and physicist known as Christian Johann Doppler while studying the starlight in relation to the movement of stars.
<em>The phenomenon of Doppler effects is generally applicable to both sound and light. </em>
An example of the Doppler effect is a police car with its siren on is driving towards you, and you perceive the pitch of the siren to increase. This is so because when a sound object moves towards you, its sound waves frequency increases, thereby causing a higher pitch. However, if the sound object is moving away from the observer, it's sound waves frequency decreases and thus resulting in a lower pitch.
<em>Other fields were the Doppler effects are applied are; astronomy, flow management, vibration measurement, radars, satellite communications etc. </em>