Answer:
Explanation:
Given that,
Initial Angular velocity w=500rpm
Converting from rpm to rad/s
1rev =2πrad
1minutes =60secs
500rpm=500rev/mins
w = 500×2π/60
wi=52.36rad/s
The final angular velocity wf=0rad/s
Time to stop is t=2.6sec
We want to find angular acceleration α
Using the equation of angular motion
wf = wi + αt.
0 = 52.36 + 2.6α
-52.36=2.6α
α = -52.36/2.6
α = -20.14rad/s²
The angular acceleration is negative because it is decelerating.
Then, α=20.14rad/s²
Answer: I feel that 3 is the answer
Explanation: Let there be 2 objects, A and B
A is at height of 5m whereas B is at height of 15m
so over here let the gravitational potential energy of A be x
and since B is 3 times higher than A B=3x
Since, earth is considered to be the point where gravitational potenial is 0
So hence forth and object 3 times up will have 3 times the gravitational potential energy of A
Answer:
The ratio of the orbital time periods of A and B is 
Solution:
As per the question:
The orbit of the two satellites is circular
Also,
Orbital speed of A is 2 times the orbital speed of B
(1)
Now, we know that the orbital speed of a satellite for circular orbits is given by:

where
R = Radius of the orbit
Now,
For satellite A:

Using eqn (1):
(2)
For satellite B:
(3)
Now, comparing eqn (2) and eqn (3):

Answer:
-True - True - true - false -false - false
Explanation:
- True The flow depends only on the charge into the surface, not on the relative position
- True The two vectors are radial, so their relative direction do not changes
- True It just depends on the charge inside
- False, it only depends on the charge, not on the form from the integration surface
- False, because if it has a load inside it can be considered in the center, but if the load is outside the flow lines change direction with respect to the surface
- False The flow depends only on the load inside, not on its position
I think the answer is 2283g