Answer:
A Pareto chart, named after an Italian economist, combines a bar chart with a line graph. The bar chart is different from a histogram in more than one way. For example, the vertical bars need not touch one another as per a histogram
Explanation:
When the leveling bulb is higher than the water level, the pressure in the system is greater than atmospheric pressure. This statement is true.
In the physical sciences, pressure is defined as the stress at a point within a confined fluid or the perpendicular force per unit area. A 42-pound box with a bottom area of 84 square inches will impose pressure on a surface equal to the force divided by the area it is applied to, or half a pound per square inch.
Atmospheric pressure, which is roughly 15 pounds per square inch at sea level, is the weight of the atmosphere pressing down on each unit area of the Earth's surface. Pascals are used to express pressure in SI units; one pascal is equivalent to one newton per square meter. Almost 100,000 pascals of atmospheric pressure are present.
To learn more about pressure please visit-
brainly.com/question/12971272
#SPJ4
Many devices have been invented to accurately measure temperature. It all started with the establishment of a temperature scale. This scale transformed the measurement of temperature into meaningful numbers.
In the early years of the eighteenth century, Gabriel Fahrenheit (1686-1736) created the Fahrenheit scale. He set the freezing point of water at 32 degrees and the boiling point at 212 degrees. These two points formed the anchors for his scale.
Later in that century, around 1743, Anders Celsius (1701-1744) invented the Celsius scale. Using the same anchor points, he determined the freezing temperature for water to be 0 degree and the boiling temperature 100 degrees. The Celsius scale is known as a Universal System Unit. It is used throughout science and in most countries.
There is a limit to how cold something can be. The Kelvin scale is designed to go to zero at this minimum temperature. The relationships between the different temperature scales are:
oK = 273.15 + oC oC = (5/9)*(oF-32) oF = (9/5)*oC+32
oF oC oK
Water boils 212 100 373
Room Temperature 72 23 296
Water Freezes 32 0 273
Absolute Zero -460 -273 0
At a temperature of Absolute Zero there is no motion and no heat. Absolute zero is where all atomic and molecular motion stops and is the lowest temperature possible. Absolute Zero occurs at 0 degrees Kelvin or -273.15 degrees Celsius or at -460 degrees Fahrenheit. All objects emit thermal energy or heat unless they have a temperature of absolute zero.
If we want to understand what temperature means on the molecular level, we should remember that temperature is the average energy of the molecules that composes a substance. The atoms and molecules in a substance do not always travel at the same speed. This means that there is a range of energy (the energy of motion) among the molecules. In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. Sometimes these molecules collide with each other. When this happens the higher speed molecule transfers some of its energy to the slower molecule causing the slower molecule to speed up and the faster molecule to slow down. If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced. So, higher temperatures mean a substance has higher average molecular motion. We do not feel or detect a bunch of different temperatures for each molecule which has a different speed. What we measure as the temperature is always related to the average speed of the molecules in a system