1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
5

HELP ME 20 POINTS!!!Assume that the average volume of an adult human body is one-tenth

Physics
2 answers:
Agata [3.3K]3 years ago
8 0

Answer:

,Assume that the average volume of an adult human body is one-tenth

cubic meter (0.10 m) and that there are two billion (2.0 x 109)

adults in the world.

a. What would be the total volume of all the adults in the world?

b. Compute the length of one edge of a cubic container that has a

volume equal to the volume of all the adults in the world.

MrRissso [65]3 years ago
3 0

a). (2.0 x 10^9) x (0.1) = 2.0 x 10^8 cubic meters

b). The edge of a cube with that volume is

(2.0 x 10^8) ^ 1/3 = about 585 metres

(about 0.36 of a mile)

==> I'm pretty sure there are actually more than 2 billion adults in the world, since the total population is well over 7 billion now.

You might be interested in
Describe the flow of energy that causes heat to be produced
Neporo4naja [7]
It may be produced by 
<span>Most of us use the word ‘heat’ to mean something that feels warm, but science defines heat as the flow of energy from a warm object to a cooler object.</span><span>Actually, heat energy is all around us – in volcanoes, in icebergs and in your body. All matter contains heat energy.</span><span>Heat energy is the result of the movement of tiny particles calledatoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another, and the transfer or flow due to the difference intemperature between the two objects is called heat.</span><span>For example, an ice cube has heat energy and so does a glass of lemonade. If you put the ice in the lemonade, the lemonade (which is warmer) will transfer some of its heat energy to the ice. In other words, it will heat up the ice. Eventually, the ice will melt and the lemonade and water from the ice will be the same temperature. This is known as reaching a state of thermal equilibrium.</span>Moving particles<span>Matter is all around you. It is everything in the universe – anything that has both mass andvolume and takes up space is matter. Matter exists in different physical forms – solids, liquids and gases.</span>All matter is made of tiny particles called atoms, molecules and ions. These tiny particles are always in motion – either bumping into each other or vibrating back and forth. It is the motion of particles that creates a form of energy called heat (or thermal) energy that is present in all matter.<span>Image: Particles in collision</span>The particles in solids are tightly packed and can only vibrate. The particles in liquids also vibrate but are able to move around by rolling over each other and sliding around. In gases, the particles move freely with rapid, random motion.Transferring heat energy – particles in collision<span>At higher temperatures, particles have more energy. Some of this energy can be transmitted to other particles that are at a lower temperature. For example, in the gas state, when a fast moving particle collides with a slower moving particle, it transfers some of its energy to the slower moving particle, increasing the speed of that particle.</span><span>With billions of moving particles colliding into each other, an area of high energy will slowly transfer across the material until thermal equilibrium is reached (the temperature is the same across the material).</span>Changing states by heat transferFaster moving particles ‘excite’ nearby particles. If heated sufficiently, the movement of particles in a solid increases and overcomes the bonds that hold the particles together. The substance changes its state from a solid to a liquid. If the movement of the particles increases further in the liquid, then a stage is reached where the substance changes into a gas.Three ways of transferring heat energy<span><span>All heat energy, including heat generated by fire, is transferred in different ways:<span><span>Image: Convection</span><span>Image: Conduction</span><span>Image: Radiation</span></span></span><span>Convection transfers heat energy through the air (and liquids). As the air heats up, the particles move further apart and become less dense, which causes the air to rise. Cooler air below moves in and heats up, creating a circular motion. The warm air circles and heats the room.</span><span>Conduction transfers heat energy through one substance to another when they are in direct contact. The moving molecules of a warm material can increase the energy of the molecules in a cooler material. Since particles are closer together, solids conduct heat better than liquids or gases.</span><span><span>Radiation is the heat that we feel coming from a hot object. It warms the air using heat waves (infrared waves) that radiate out from the hot object in all directions until it is absorbed by other objects. Transfer of heat byradiation travels at the speed of light and goes great distances.</span><span>With a log fire, the air in the room above the fire is heated and rises to create convection currents. The heat felt directly from the fire is transmitted to us through radiation. Conduction helps to keep a fire going by transferring heat energy directly from the wood to neighbouring wood in the fire</span></span></span>An effect of heat – expansion<span>When gases, liquids and solids are heated, they expand. As they cool, they contract or get smaller. The expansion of the gases and liquids is because the particles are moving around very fast when they are heated and are able to move further apart so they take up more room. If the gas or liquid is heated in a closed container, the particles collide with the sides of the container, and this causes pressure. The greater the number of collisions, the greater the pressure.</span><span>Sometimes when a house is on fire, the windows will explode outwards. This is because the air in the house has been heated and the excited molecules are moving at high speed around the room. They are pushing against the walls, ceiling, floor and windows. Because the windows are the weakest part of the house structure, they break and burst open, releasing the increased pressure.</span>
7 0
3 years ago
Can a white person call a black dude a negro
NARA [144]
No, because the word might offend that person.
5 0
2 years ago
Read 2 more answers
sara and tory are out fishing on the lake on a hot summer day when they both decide to go for a swim. sara dives off the front o
crimeas [40]

Here it is an application of Newton's III law

as we know by Newton's III law that every action has equal and opposite reaction

So here as we know that two boys jumps off the boat with different forces

from front side of the boat the boy jumps off with force 45 N which means as per Newton's III law if boy has a force of 45 N in forward direction then he must apply a reaction force on the boat in reverse direction of same magnitude

So boat must have an opposite force on front end with magnitude 45 N

Now similar way we can say

from back side of the boat the boy jumps off with force 60 N which means as per Newton's III law if boy has a force of 60 N in backward direction then he must apply a reaction force on the boat in reverse direction of same magnitude

So boat must have an opposite force on front end with magnitude 60 N

So here net force due to both jump on the boat is given by

F_{net} = F_1 - F_2

F_{net} = 60 - 45

F_{net} = 15 N

so boat will have net force F = 15 N in forward direction due to both jumps

3 0
3 years ago
Trumpeter A holds a B-flat note on the trumpet for a long time. Person C is running towards the trumpeter at a constant velocity
Vikki [24]
You didn't mention it, but the trumpeter herself has to be standing still.

<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat.  (A)

Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.

Person D, the one standing still the whole time, hears the B-flat.</span>
5 0
3 years ago
Read 2 more answers
A truck with a mass of 1370 kg and moving with a speed of 12.0 m/s rear-ends a 593 kg car stopped at an intersection. The collis
Elza [17]

Answer:

speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s

Explanation:

Given:

mass of truck M = 1370 kg

speed of truck = 12.0 m/s

mass of car m = 593 kg

collision is elastic therefore,

Applying law of momentum conservation we have

momentum before collision = momentum after collision

1370×12 + 0( initially car is at rest) = 1370×v1+ 593×v2               ....(i)

Also for a collision to be elastic,

velocity of approach = velocity of separation

12 -0 = v2-v1                  ....(ii)

using (i) and (ii) we have

So speed of car after collision, v2 =16.1 m/s and of the truck, v1 = 4.6 m/s

4 0
3 years ago
Other questions:
  • An element in group IIA would form a __________ ion while an element in group VIIA would form a(n) __________ ion.
    5·1 answer
  • In the real world, orbiting objects such as satellites and stations do not need to be constantly accelerating. What is different
    13·1 answer
  • Use the periodic table to identify the number of core electrons and the number of valence electrons in each case below. Potassiu
    12·2 answers
  • What is the maximum number of f orbitals that are possible in a given shell?
    6·1 answer
  • Thomas is climbing Mt. Everest. What happens as he climbs farther up the mountain?
    15·2 answers
  • Why do planents revolve around the sun ?​
    9·1 answer
  • A plane is traveling North at 80km/hr into a 20 km/hr headwind (South). What is the plane's resultant velocity?
    12·2 answers
  • An arrow is launched from P with a speed Vi = 25m / s. Knowing that the target Q is 10 m high, and the arrow reaches it as shown
    5·1 answer
  • If you are given values for, Ay, and At, which kinematic equation could be used to find ūo ?
    7·1 answer
  • A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t = 0 s, the x components of the puck's i
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!