Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
The angular velocity, ω=
2π/t; t = 24 hrs = 24 x 3600 seconds = 86400 s
ω = 7.27 x 10⁻⁵
v = ωr
= 7.27 x 10⁻⁵ x 3242.8 x 1.6 x 1000 (converting miles to meters)
= 377.2 m/s
The best explanation for the difference in time is: A. The difference in weight doesn't affect the time, but they are affected differently by air resistance.
<h3>What is weight?</h3>
Weight can be defined as the force acting on an object or a physical body due to the effect of gravity. Also, the weight of an object (body) is typically measured in Newton.
<h3>The factors that affect weight.</h3>
Some of the factors that affect the weight that is possessed by an object or a physical body include the following:
In conclusion, the weight possessed by the shoe and shirt has no effect on time but would be affected differently by air resistance.
Read more on weight here: brainly.com/question/13833323
Answer:
The first law states that if the net force is zero, then the velocity of the object is constant.