<span>It is used for the separation of fluids, gas or liquid, based on density.
Hope this helps!</span>
Answer:
C. the relative number of atoms of each element, using the lowest whole ratio.
Explanation:
The empirical formula is how we simplify the whole formula to simplify it to its smallest indivisible parts.
It is definitely not the actual number of atoms. If you see an empirical formula, don't think that it's the full thing.
It is also not a representation of a compound to show its atoms' arrangement: this would be a Lewis dot structure, or a ball and stick model, or something similar. We don't use the empirical formula for this purpose.
Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Search Results
Featured snippet from the web
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another. This means that a system always has the same amount of energy, unless it's added from the outside. ... The only way to use energy is to transform energy from one form to another.
a. Solid to liquid - melting process
b. Liquid to gas - evaporation process
c. Gas to solid - deposition process
d. Solid to gas - sublimation process
e. Liquid to solid - solidification process
f. Gas to liquid - condensation process