For the answer to the questions above,
a) Ag2CO3(s) => Ag2O(s)+CO2(g)
<span>b) Cl2(g)+2(KI)(aq) => I2(s)+2(KCl)(aq) (coefficients are for balanced equation) </span>
<span>net ionic is Cl2(g)+2I- => I2(s)+2Cl-(aq) </span>
<span>c) I2(s)+3(Cl2)(g)=>2(ICl3)
</span>I hope I helped you with your problem
Answer: There are
molecules in 63.00 g of 
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1 mole of
contains =
molecules
Thus 3.5 moles of
contains =
molecules.
There are
molecules in 63.00 g of 
Answer:
2
Explanation:
The coefficient for O is 2 and this is an example of a combustion reaction. With the help of the coefficient 2 infront of oxygen, this equation now demonstrates law of conservation of mass.
1 m = 0,001 km
1m³ = 0,000000001 km³
278 m³ = 0,000000278 km³ = 2,78×10^(-7) km³
:•)