Answer:
0°C.
Explanation:
Hello,
In this case, given the heating curve of water on the attached document, we can notice that at 0 °C the solid starts melting, which means that the melting point is reached. Melting point is known as a physical change whereby a solid changes to liquid by the addition of heat as it allows the molecules to separate to each other.
Best regards.
First M stands for Molarity which is (moles of solute) / (Liters of solution). we also know that moles = (mass) / (molar mass). so we can form some equations here. We know:
Molarity (M) = moles (mol) / Liters (L)
moles (mol) = (mass) / (molar mass)
we can substitute the (mass) / (molar mass) for (moles) and get:
M = [(mass) / (molar mass)] / Liters
we can now isolate mass and get
M * Liters * molar mass = mass
now we need to find the molar mass of CaCl2 which is 110.98 g/mol
plug the values in and get
.350M * 6.5L * 110.98 g/mol = mass
mass = 252.4795g however the 6.5L has only 2 sig figs so i would say
mass CaCl2 = 2.5 * 10 ^2 g
Answer:
10grams
Explanation:
So it weighs 236 grams added with 25 grams. So it now weighs 261 grams so 10 grams of sugar remains in it.
Answer: 1 mol of oxygen, O₂, and 1 mol of CO will have the same number of molecules, and the same number of atoms.
Justification:
Althought the question is too open, other answers may arise, the most remarkable similarity between the two compounds is that both are diatomic.
That means that both molecules oxygen, O₂, and carbon monoxide, CO have two atoms.
So, 1 mol of oxygen, O₂, and 1 mol of CO will have the same number of molecules, and the same number of atoms.
You must remember that 1 mol means a specific number. It is Avogadro's number, which is 6.022 × 10 ²³.
So 1 mol of CO and 1 mol of O₂ are the same number of representative particles: 6.022 ×10²³ molecules eac, and two times that number of atoms each (since each molecule has two atoms).
Answer:see the image for the structure of the allylic carbocation
Explanation:
When 2,4-hexanediene is protonated at the 5-position as shown in the image, a carbonation is formed which can be stabilized by resonance. The positive charge can be found on carbon 4 or carbon 2 due to resonance of the allylic carbonation. The both structures are shown and electron movements were depicted using curved arrow notation in the structures shown in the image attached.