Answer:
1.5F
Explanation:
Using
E= F/q
Where F= force
E= electric field
q=charge
F= Eq
So if qis tripled and E is halved we have
F= (E/2)3q
F= 1.5Eq=>> 1.5F
Answer:
2.24 T
Explanation:
From Electromagnetic Field,
F = BILsin∅................ Equation 1
Where F = Force on the wire, B = Field strength, I = current flowing in the conductor, L = length of the conductor, ∅ = The angle the conductor makes with the magnetic field.
Making B the subject of the equation,
B = F/ILsin∅..................... Equation 2
Given: F = 2.15 N, I = 32 A, L = 3.00 cm = 0.03 m, ∅ = 90° ( the wire is perpendicular to the magnetic field)
Substitute into equation 2
B = 2.15/(32×0.03×sin90°)
B = 2.15/0.96
B = 2.24 T.
Hence the Field strength = 2.24 T
Answer:
No, there wasn't any variation in the light intensity at 360 degrees.
During the rotation, rotating through an angle of 90° gradually brought the intensity to a maximum. Rotating by another 90° degrees brought the intensity to a minimum at some point. Rotating by another 90° brought it back to its maximum and then another 90° brought it to its initial intensity.
It is d because albert einstein was physics scienctist
ONLY if ur asking for the 3 states of matter it is solid liquid and gas