Answer:

Explanation:
As we know that the small particle is in equilibrium at an angle of 16 degree with the vertical
so here we can use force balance in vertical and horizontal direction


now from above equation we have

also by division of above two equations we have


now from above equation again




(a) Frequency of sound wave is inversely proportional to string length.
(b) Pitch of a sound depends on the frequency while loudness depends on the amplitude of sound.
<h3>
Relationship between string length and frequency</h3>
The relationship between string length and frequency is given as;
λ = 2L
where;
- λ is wavelength
- L is length of the string
v = fλ
f = v/λ
f = v/2L
Thus, frequency of sound wave is inversely proportional to string length.
<h3>Relationship between pitch and loudness of sound</h3>
The pitch of a sound depends on the frequency while loudness of a sound depends on the amplitude of sound waves.
Learn more about pitch and loudness here: brainly.com/question/61859
Answer:

Explanation:
Given

Required
Determine the difference in the blood pressure from feet to top
This is calculated using Pascal's second law.
The second law is represented as:

Subtract P1 from both sides

Where



P2 - P1 = Blood Pressure Difference
So, the expression becomes:



Hence, the difference in blood pressure is approximately 
Rain is considered a precipitate. Along with: drizzle, sleet, snow and hail.
hope this helps :)
Answer:
the answer for your question is false ( F )