Answer:
A) 6.5 m/s²
Explanation:
Mass of the bucket, m = 3.0 kg
depth of the well, d = 10 m
tension on the rope, T = 9.8 N
The net downward force on the bucket is given as;
T = mg - ma
where;
a is downward acceleration of the bucket
9.8 = (3 x 9.8) - 3a
9.8 = 29.4 - 3a
3a = 29.4 - 9.8
3a = 19.6
a = 19.6 / 3
a = 6.53 m/s² downwards
Therefore, the acceleration of the bucket is 6.53 m/s² downwards
Answer:
0.0613°C
Explanation:
the given parameters are m=15gm=15×10⁻³ V₁=865m/s V₂=534m/s
the bullet moves with different kinetic energies before and after the penetration, therefore
Kinetic energy before - kinetic energy after = 1/2 × m × ( V₁² - V₂²)
=
× 15×10⁻³ × (865² - 534²)
= 3.47 × 10⁻³J
this loss in energy is transferred to the water, therefore
change in temperature = 
where c = heat capacity of water = 4.19 x 10^3
m = mass of water = 13.5 kg
= {3.47 × 10⁻³} / {13.5 x 4.19 x 10^3 }
=0.0613°C
Taking right movement to be positive means leftward movement is negative.
Hence we have a deceleration of



Using this 'suvat' equation

we can determine the initial velocity



Hence the initial velocity is 13.0 meters per seconds
Answer:
Part a)

Part b)

Explanation:
Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have

here we also use angular momentum conservation
so we have

also we know that the collision is elastic collision so we have

so we have

also we know

also we know

so we have


now we have


Part b)
Now we know that speed of the ball after collision is given as

so it is given as
