Answer:
The average emf induced in the coil is 175 mV
Explanation:
Given;
number of turns of the coil, N = 1060 turns
diameter of the coil, d = 20.0 cm = 0.2 m
magnitude of the magnetic field, B = 5.25 x 10⁻⁵ T
duration of change in field, t = 10 ms = 10 x 10⁻³ s
The average emf induced in the coil is given by;

where;
A is the area of the coil
A = πr²
r is the radius of the coil = 0.2 /2 = 0.1 m
A = π(0.1)² = 0.03142 m²

Therefore, the average emf induced in the coil is 175 mV
Answer:
W = 1.432 KJ
Explanation:
given,
mass = 22.2 Kg
angle of the rope = 27.5°
distance on the ground = 24 m
kinetic friction= μ = 0.32
acceleration due to gravity, g = 9.8 m/s²
Work done = ?
W = F d cosθ
a = 0 because it is moving with constant speed
equating all the forces acting in x direction
F cosθ = F friction = μN
equating all the forces acting in y direction
F sinθ + N -mg =0
now,
N = mg - F sinθ
putting value of N
F cosθ = μ mg -μ F sinθ
F (cosθ + μsinθ ) = μ mg


F =67.28 N
now,
W=F d cosθ
W =67.28 x 24 x cos(27.5)
W =1432.27 J
W = 1.432 KJ
D wavelength
velocity deals w/ speed
frequency/amplitude deals with sound
Answer:
Explanation:
When a camera shifts focus from a faraway object to a nearby object, the lens-to-film distance must increase. Likewise, when it shifts focus from a nearby object to a distant object, there must be an increase in the lens to film distance (that is, the image distance).
Therefore, if the picture of an object that is far away, the lens must move towards the film.
The focal length cannot be changed because it is fixed for a lens. Nevertheless, in order to focus on an object, the image distance can be changed.
Answer:
6j
uuuuuuus Jessica unmold sun wu disco if u duh tastes jealous happens