1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
3 years ago
6

A lagoon is designed to accommodate an input flow of 0.10 m^3/s of nonconservative pollutant with concentration 30 mg/L and deca

y coefficient of 0.2/day. The effluent from the lagoon must have pollutant concentration of less than 10 mg/L. How large is the lagoon (assume complete mixing)?
Engineering
1 answer:
dexar [7]3 years ago
5 0

Answer:

Volume of the lagoon required for the decay process must be larger than 86580 m³ = 8.658 × 10⁷ L

Explanation:

The lagoon can be modelled as a Mixed flow reactor.

From the value of the decay constant (0.2/day), one can deduce that the decay reaction of the pollutant is a first order reaction.

The performance equation of a Mixed flow reactor is given from the material and component balance thus:

(V/F₀) = (C₀ - C)/((C₀)(-r)) (From the Chemical Reaction Engineering textbook, authored by Prof. Octave Levenspiel)

V = volume of the reactor (The lagoon) = ?

C₀ = Initial concentration of the reactant (the pollutant concentration) = 30 mg/L = 0.03 mg/m³

F₀ = Initial flow rate of reactant in mg/s = 0.10 m³/s × C₀ = 0.1 m³/s × 0.03 mg/m³ = 0.003 mg/s

C = concentration of reactant at any time; effluent concentration < 10mg/L, this means the maximum concentration of pollutant allowed in the effluent is 10 mg/L

For the sake of easy calculation, C = the maximum value = 10 mg/L = 0.01 mg/m³

(-r) = kC (Since we know this decay process is a first order reaction)

This makes the performance equation to be:

(kVC₀/F₀) = (C₀ - C)/C

V = F₀(C₀ - C)/(kC₀C)

k = 0.2/day = 0.2/(24 × 3600s) = 2.31 × 10⁻⁶/s

V = 0.003(0.03 - 0.01)/(2.31 × 10⁻⁶ × 0.03 × 0.01)

V = 86580 m³

Since this calculation is made for the maximum concentration of 10mg/L of pollutant in the effluent, the volume obtained is the minimum volume of reactor (lagoon) to ensure a maximum volume of 10 mg/L of pollutant is contained in the effluent.

The lower the concentration required for the pollutant in the effluent, the larger the volume of reactor (lagoon) required for this decay reaction. (Provided all the other parameters stay the same)

Hope this helps!

You might be interested in
10. An engineer is designing a total hip implant. She intends to make the femoral stem out of titanium because it forms a good i
creativ13 [48]

Answer:

Yes. She should be worried about corrosion. The 18-8 stainless exhibits intergranular corrosion due to high (0.08%) carbon content and gross pitting due to low molybdenum content.

Explanation: lol

8 0
4 years ago
A cylindrical metal specimen having an original diameter of 12.8 mm and gauge length of 50.80 mm is pulled in tension until frac
Sedaia [141]

Answer:

%Reduction in area = 73.41%

%Reduction in elongation = 42.20%

Explanation:

Given

Original diameter = 12.8 mm

Gauge length = 50.80mm

Diameter at the point of fracture = 6.60 mm (0.260 in.)

Fractured gauge length = 72.14 mm.

%Reduction in Area is given as:

((do/2)² - (d1/2)²)/(do/2)²

Calculating percent reduction in area

do = 12.8mm, d1 = 6.6mm

So,

%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²

%RA = 0.734130859375

%RA = 73.41%

Calculating percent reduction in elongation

%Reduction in elongation is given as:

((do) - (d1))/(d1)

do = 72.14mm, d1 = 50.80mm

So,

%RA = ((72.24) - (50.80))/(50.80)

%RA = 0.422047244094488

%RA = 42.20%

3 0
4 years ago
a circular pile, 19 m long is driven into a homogeneous sand layer. The piles width is 0.5 m. The standard penetration resistanc
Elena L [17]

Answer:

Point force (Qp) = 704 kn/m²

Explanation:

Given:

length = 19 m

Width = 0.5 m

fs = 4

Vicinity of the pile = 25

Find:

Point force (Qp)

Computation:

Point force (Qp) = fs²(l+v)

Point force (Qp) = 4²(25+19)

Point force (Qp) = 16(44)

Point force (Qp) = 704 kn/m²

5 0
3 years ago
Electric current originates from which part of an atom? *
yanalaym [24]

Answer: Electric current originates from positively charged protons negatively charged electrons of an atom.

Explanation:

The movement of ions (positive or negative) from one point to another is called electric current.

An atom has three sub-atomic particles. These are protons, neutrons and electrons.

Protons are positively charged, neutrons have no charge and electrons are negatively charged. Protons and neutrons reside inside the nucleus of an atom whereas electrons revolve around the nucleus.

So, protons and electrons are responsible for originating electric current form an atom as these are the charged particles.

Thus, we can conclude that electric current originates from positively charged protons negatively charged electrons of an atom.

3 0
3 years ago
A 4-L pressure cooker has an operating pressure of 175 kPa. Initially, one-half of the volume is filled with liquid and the othe
vodomira [7]

Answer:

the highest rate of heat transfer allowed is 0.9306 kW

Explanation:

Given the data in the question;

Volume = 4L = 0.004 m³

V_f = V_g = 0.002 m³

Using Table ( saturated water - pressure table);

at pressure p = 175 kPa;

v_f = 0.001057 m³/kg

v_g = 1.0037 m³/kg

u_f = 486.82 kJ/kg

u_g 2524.5 kJ/kg

h_g = 2700.2 kJ/kg

So the initial mass of the water;

m₁ = V_f/v_f + V_g/v_g

we substitute

m₁ = 0.002/0.001057  + 0.002/1.0037

m₁ = 1.89414 kg

Now, the final mass will be;

m₂ = V/v_g

m₂ = 0.004 / 1.0037

m₂ = 0.003985 kg

Now, mass leaving the pressure cooker is;

m_{out = m₁ - m₂

m_{out = 1.89414  - 0.003985

m_{out = 1.890155 kg

so, Initial internal energy will be;

U₁ = m_fu_f + m_gu_g

U₁ = (V_f/v_f)u_f  + (V_g/v_g)u_g

we substitute

U₁ = (0.002/0.001057)(486.82)  + (0.002/1.0037)(2524.5)

U₁ = 921.135288 + 5.030387

U₁ = 926.165675 kJ

Now, using Energy balance;

E_{in -  E_{out = ΔE_{sys

QΔt - m_{outh_{out = m₂u₂ - U₁

QΔt - m_{outh_g = m₂u_g - U₁

given that time = 75 min = 75 × 60s = 4500 sec

so we substitute

Q(4500) - ( 1.890155 × 2700.2 ) = ( 0.003985 × 2524.5 ) - 926.165675

Q(4500) - 5103.7965 = 10.06013 - 926.165675

Q(4500) = 10.06013 - 926.165675 + 5103.7965

Q(4500) = 4187.690955

Q = 4187.690955 / 4500

Q = 0.9306 kW

Therefore, the highest rate of heat transfer allowed is 0.9306 kW

5 0
3 years ago
Other questions:
  • A pitfall cited in Section 1.10 is expecting to improve the overall performance of a computer by improving only one aspect of th
    6·1 answer
  • g The pump inlet is located 1 m above an arbitrary datum. The pressure and velocity at the inlet are 100 kPa and 2 m/s, respecti
    8·1 answer
  • Consider a unidirectional continuous fiber-reinforced composite with epoxy as the matrix with 55% by volume fiber.i. Calculate t
    10·1 answer
  • Yasir is trying to build an energy-efficient wall and deciding what materials to use. How can he calculate the thermal resistanc
    6·1 answer
  • Ball joints on a vehicle equipped with MacPherson struts are being inspected for wear. Which of the following would be the corre
    11·1 answer
  • The current through a 10-mH inductor is 10e−t∕2 A. Find the voltage and the power at t = 8 s.
    15·2 answers
  • Hỗ trợ mình với được không các bạn
    13·1 answer
  • A segment of a roadway has a free flow speed of 45 mph and a jam density of 25 ft per vehicle. Determine the maximum flow and at
    12·1 answer
  • How to install a curt 5th wheel hitch in a 2017 chevy silverado
    14·1 answer
  • What do you think the top TWO game elements are that directly contribute to player immersion?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!