1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
2 years ago
6

A masonry facade consisting of 3,800 square feet is to be constructed for a building. The total cost per worker hour is estimate

d to be $31.50, and the total estimated cost of the labor for this task is $10,500. Assuming 8-hour work days and a crew of six workers, how many days should be allowed to complete this task? What is the production rate that the crew must attain to keep the project on schedule and within the budget?
Engineering
1 answer:
lana66690 [7]2 years ago
6 0

Answer:

Days: 6.9444 days

Production rate: 547.2035 ft²/s

Explanation:

the solution is attached in the Word file

Download docx
You might be interested in
So in my settings i set it to send notifications too my email so ik when smtn happens but it doesn't even send stuff too it.....
attashe74 [19]

Answer:

Did you make sure you did it and your notifications are on

3 0
3 years ago
A saturated 1.5 ft3 clay sample has a natural water content of 25%, shrinkage limit (SL) of 12% and a specific gravity (GS) of 2
Svetllana [295]

79 f t^{3} is the volume of the sample when the water content is 10%.

<u>Explanation:</u>

Given Data:

V_{1}=100\ \mathrm{ft}^{3}

First has a natural water content of 25% = \frac{25}{100} = 0.25

Shrinkage limit, w_{1}=12 \%=\frac{12}{100}=0.12

G_{s}=2.70

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,

V \propto[1+e]

\frac{V_{2}}{V_{1}}=\frac{1+e_{2}}{1+e_{1}}  ------> eq 1

e_{1}=\frac{w_{1} \times G_{s}}{S_{r}}

The above equation is at S_{r}=1,

e_{1}=w_{1} \times G_{s}

Applying the given values, we get

e_{1}=0.25 \times 2.70=0.675

Shrinkage limit is lowest water content

e_{2}=w_{2} \times G_{s}

Applying the given values, we get

e_{2}=0.12 \times 2.70=0.324

Applying the found values in eq 1, we get

\frac{V_{2}}{100}=\frac{1+0.324}{1+0.675}=\frac{1.324}{1.675}=0.7904

V_{2}=0.7904 \times 100=79\ \mathrm{ft}^{3}

7 0
3 years ago
In your opinion...
ch4aika [34]

Answer:no

TTHANLS FOR FREE POINTS

Explanation:

8 0
2 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
Which apparatus is likely to carry a ladder? (There may be more than one answer.)
Aloiza [94]
B and D
hope this helped
4 0
2 years ago
Other questions:
  • 2. The initially velocity of the box and truck is 60 mph. When the truck brakes such that the deceleration is constant it takes
    12·1 answer
  • A(n) _________ is a current greater than the equipment rated current or conductor ampacity, which is confined to the normal cond
    12·1 answer
  • Plz answer all of these questions!
    15·1 answer
  • You are traveling along an interstate highway at 32.0 m/s (about 72 mph) when a truck stops suddenly in front of you. You immedi
    11·1 answer
  • A 200-gr (7000 gr = 1 lb) bullet goes from rest to 3300 ft/s in 0.0011 s. Determine the magnitude of the impulse imparted to the
    10·1 answer
  • As part of an insurance company’s training program, participants learn how to conduct an analysis of clients’ insurability. The
    9·1 answer
  • Are there any companies that you can get a job at as an air craft engeer after university​
    14·1 answer
  • Can someone tell me what car, year, and model this is please
    15·2 answers
  • Connect wires to make the correct logic outputs.
    12·1 answer
  • A linear frequency-modulated signal makes a good test for aliasing, because the frequency moves over a range. This signal is
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!