Answer:
Blood is thicker than water due primarily to the presence of red blood cells
Answer: <u>This is because it becomes more dense when cells are added</u>
Hope this helped :3
Answer:
v=30 m/s
Explanation:
h - height
g - acceleration due to gravity=10
t - time
v- velocity

45 = 5t²
t² = 9
t=3 seconds
v=g×t
v=10×3
v=30 m/s
Answer:
Explanation:
Answer: Let ke = 1/2 IW^2 = 1/2 kMr^2 W^2 be Earth's rotational KE. W = 2pi/24 radians per hour rotation speed and k = 2/5 for a solid sphere M is Earth mass, r = 6.4E6 m.
Then ke = 1/2 2/5 6E24 (6.4E6)^2 (2pi/(24*3600))^2 = ? Joules. You can do the math, note W is converted to radians per second for unit consistency.
Let KE = 1/2 KMR^2 w^2 be Earth's orbital KE. w = 2pi/(365*24) radians per hour K = 1 for a point mass. Note I used 365 days, a more precise number is 365.25 days per year, which is why we have Leap Years.
Find KE/ke = 1/2 KMR^2 w^2//1/2 kMr^2 W^2 = (K/k)(w/W)^2 (R/r)^2 = (5/2) (365)^2 (1.5E11/6.4E6)^2 = 7.81E9 ANS
Because the sound vibrations traveled faster through the solid metal and slower through the gassy air.
Answer:
Its final velocity and how much time it takes to reach the water
Explanation:
The motion of the stone is a uniformly accelerated motion, so we can use the following suvat equation to determine its final velocity:

where
v is the final velocity
u = 0 is the initial velocity
is the acceleration of gravity
s = 52 m is the distance covered during the fall
Solving for v,

We can also find how much time it takes to reach the water, using the equation

where
v = 31.9 m/s is the final velocity
u = 0 is the initial velocity
t is the time
And solving for t,
