Answer:
0.12 mm ; 140.50 rad/m ; 628.32 rad/sec ; +
Explanation:
Given the wave equation of the form :
y(x, t) = ym sin(kx ± ωt)
Mas per unit length (u) = 5 g/cm = (5÷1000)kg / 0.01m) = 0.005kg/0.01m = 0.5kg/m
Tension, T = 10 N
Amplitude, A = 0.12 mm
Frequency, F = 100 Hz
Comparing with the general wave equation :
y = Asin(kx ± ωt)
A = amplitude = ym = 0.12 mm
2.) k = 2π / λ
Recall :
v = fλ
v = sqrt(T/u) = sqrt(10/0.5) = sqrt(20) = 4.472
λ = v/ f = 4.472 / 100 = 0.04472
Hence,
k = (2 * π) / 0.04472
k = 140.50 rad/m
3.) Angular frequency, ω
ω = 2πf = 2 * 3.14 * 100 = 628.32 rad/sec
4.) sign is +ve
Direction of wave propagation as given is in the negative x axis
<span>During a medical evaluation, the doctor can D. all of the above. It is the doctor's duty to do all of these things - to establish some guidelines for activities, to see whether these programs are appropriate for the person in question, and to help them pick activities that will be safe for them and which they will be able to do without harming their bodies. These are all the things that doctors do in order to help their patients lead a safe and healthy life.</span>
Answer:
Independent variable: how far the soccer ball is kicked.
Dependent variable: how well the person does on their math test
Explanation:
The distance the ball is kicked is what the scientist can change. On the other hand, in this experiment, how well the person does on their test supposedly relies on how far the soccer ball is kicked.
Answer:
substances have different melting and boiling points to one another.
Explanation:
Answer:
If it is moving 34 m/s it will take 100 seconds, or 1:40 to reach 3400 meters.
Explanation:
I found this answer by dividing 3400 by 34 and converting seconds to minutes