Answer:
θ = 4.78º
with respect to the vertical or 4.78 to the east - north
Explanation:
This is a velocity compound exercise since it is a vector quantity.
The plane takes a direction, the air blows to the west and the result must be to the north, let's use the Pythagorean theorem to find the speed
v_fly² = v_nort² + v_air²
v_nort² = v_fly² + - v_air²
Let's use trigonometry to find the direction of the plane
sin θ = v_air / v_fly
θ = sin⁻¹ (v_air / v_fly)
let's calculate
θ = sin⁻¹ (10/120)
θ = 4.78º
with respect to the vertical or 4.78 to the north-east
Mechanical energy is the sum of kinetic energy and potential energy
A neutral atom is simply an atom that has no charge.
Answer:
c. The steady-state value of the current depends on the resistance of the resistor.
Explanation:
Since all the components are connected in series, when the switch is at first open, current will not flow round the circuit. As current needs to flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery.
But the moment the switch is closed, at the initial time t = 0, the current flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery. It then begins to increase at a rate that depends upon the value of the inductance of the inductor.
Answer:
a) 3.37 x 
b) 6.42kg/
Explanation:
a) Firstly we would calculate the volume of the metal using it`s weight in air and water , after finding the weight we would find the density .
Weight of metal in air = 50N = mg implies the mass of metal is 5kg.
Now the difference of weight of the metal in air and water = upthrust acting on it = volume (metal) p (liquid) g = V (1000)(10) = 14N. So volume of metal piece = 14 x
. So density of metal = mass of metal / volume of metal = 5 / 14 x
= 3.37 x 
b) Water exerts a buoyant force to the metal which is 50−36 = 14N, which equals the weight of water displaced. The mass of water displaced is 14/10 = 1.4kg Since the density of water is 1kg/L, the volume displaced is 1.4L. Hence, we end up with 3.57kg/l. Moreover, the unknown liquid exerts a buoyant force of 9N. So the density of this liquid is 6.42kg/