There are different options here but all of them work by approximating and assuming.
i) that the boulder is above ground.
ii) that the bottom surface of the boulder is known.
iii) the shape of the boulder is taken into account.
The most accurate way is measuring it by displacement method but the boulder is immovable hence the volume can be calculated by measuring the boulder or a waterproof box to be built around the boulder and calculate the volume occupied by boulder.
All the above methods are estimating methods.
*Another way to find the density is through specific gravity.
S.G = <u>Density</u><u> </u><u>of</u><u> </u><u>object</u>
Density of water
If the material that makes the boulder is known that is if it's stone or a mineral then the specific gravity can be found.
If the boulder is purely rock then S.G lies between 3 - 3.5 and the density of water is known thus the density of the boulder can be found without moving the boulder.
This is what I think after correction and allthe best!
You do this one just like the other one that I just solved for you.
For this one ...
The density of the object is 2.5 gm/cm³.
We know that every cm³ of it we have contains 2.5 gm of mass.
We have to find out how many cm³ we have.
The question tells us: We have 2.0 cm³.
Each cm³ of space that the object occupies contains 2.5 gm of mass.
So the 2.0 cm³ that we have contains (2 x 2.5 gm) = 5 gms.
That's the mass of our object.
Water sheds i hope this helps give me a brainiest answer