Answer:

Explanation:
Hello!
In this case, according to the given balanced chemical reaction:

We can see there is 1:1 between benzene and chlorobenzene as the relavant product; thus, since the molar mass of benzene is 78.11 g/mol and that of chlorobenzene is 112.55 g/mol, the theoretical yield for this reaction turns out:

Best regards!
This the balanced equation based on the question

.
We then proceed with the following calculations
The answer is
is produced.
1. a 2.b 3 a 4. c. 4.a 5. d 6.a. 2Na + Cl2 2NaC 7.c. 3 8.3 9.b
When 440.23 grams of iron(III) oxide are reacted with hydrogen gas, the amount of iron produced will be 307.66 grams
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:

The mole ratio of iron(III) oxide to produced iron is 1:2.
Mole of 440.23 iron(III) oxide = 440.23/159.69 = 2.76 moles
Equivalent mole of produced iron = 2.76 x 2 = 5.52 moles
Mass of 5.52 moles of iron = 5.52 x 55.8 = 307.66 grams
More on stoichiometric calculations can be found here; brainly.com/question/27287858
#SPJ1
The mass of sodium bicarbonate (NaHCO₃) used in the experiment is 1.997 g
<h3>Calculating mass </h3>
From the question we are to calculate the mass of NaHCO₃ (sodium bicarbonate) used in the experiment
From the given information
Mass of empty evaporating dish = 46.233g
Mass of evaporating dish + Sodium bicarbonate = 48.230g
∴ Mass of sodium bicarbonate (NaHCO₃) = [Mass of evaporating dish + Sodium bicarbonate] - [Mass of empty evaporating dish]
Mass of sodium bicarbonate (NaHCO₃) = 48.230g - 46.233g
Mass of sodium bicarbonate (NaHCO₃) = 1.997 g
Hence, the mass of sodium bicarbonate (NaHCO₃) used in the experiment is 1.997 g
Learn more on Calculating mass here: brainly.com/question/15268826