Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Answer:
The maximum height is 2881.2 m.
Explanation:
Given that,
Acceleration = 29.4 m/s²
Time = 7.00 s
We need to calculate the distance
Using equation of motion

Put the value into the formula


We need to calculate the velocity
Using formula of velocity

Put the value into the formula


We need to calculate the height
Using formula of height

Put the value into the formula


We need to calculate the maximum height
Using formula for maximum height

Put the value into the formula


Hence, The maximum height is 2881.2 m.
Answer:
see below
Explanation:
a. 0.1886 x 12
=2.2632
This has 2 sig figures so the answer can only have 2 sig figures
2.3
b. 2.995 - 0.16685
=2.82815
The most accurate in the problem is to thousands place so our answer can only be accurate to the thousands place
2.828
c. 910 x 0.18945=172.3995
The least number of significant figures is 3 so the answer can only have 3 significant figures
172
Answer:

Explanation:
Given that the airplane starts from the rest (this is initial velocity equals to zero) and accelerates at a constant rate, position can be described like this:
where x is the position, t is the time a is the acceleration and
is initial velocity. In this way acceleration can be found.
.
Now we are able to found velocity at any time with the formula: 
Answer:
It changes into a completely different element