Answer:
remains the same
Explanation:
Momentum refers to the quantity of motion of a body. When any body of mass moves, it possess momentum. Numerically,
Momentum = mass x velocity
i.e. momentum is the product of the mass x velocity
Momentum of a body is always conserved.
In the context, the skateboard has certain momentum before Freddy lands on it. After Freddy lands, the momentum of skateboard remains the same, there is no change in the momentum.
This is because, here the momentum is conserved. After Freddy lands on the skateboard, the total mass on the skateboard increases and so the velocity decreases making the momentum same before the landing.
The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
The interaction of electric currents or fields and magnetic fields.
Karma, and sensei. Maybe nagisa