Answer:
121.0 W
Explanation:
We use the equation for rate of heat transfer during radiation.
Q/t = σεA(T₂⁴ - T₁⁴)
Since temperature of surroundings = T₁ = -20.0°C = 273 +(-20) = 253 K, and temperature of skier's clothes = T₂ = 5.50°C = 273 + 5.50 = 278.5 K.
Surface area of skier , A = 1.60 m², emissivity of skier's clothes, ε = 0.70 and σ = 5.67 × 10⁻⁸ W/m²K⁴
.
Therefore, the rate of heat transfer by radiation Q/t is
Q/t = σεA(T₂⁴ - T₁⁴) = (5.67 × 10⁻⁸ W/m²K⁴
) × 0.70 × 1.60 m² × (278.5⁴ - 253⁴) = 6.3054 × (1918750544.0625) × 10⁻⁸ W = 1.2098 × 10² W = 120.98 W ≅ 121.0 W
The result of a wave generator traveling faster than the speed of a wave is called as a boom. If the wave is a sound wave, it is called a sonic boom. However, if the wave is light, it is called as a luminal boom. Luminal bloom happens in some industries and is commonly called as the Cherenkov radiation.
You would probably have a low frequency due to how much the wavelength is spread out.
Answer:
5. 9GmM/(10R)
Explanation:
m is the mass of the satellite
M is the mass of the earth
W is the energy required to launch the satellite
Energy at earth surface = Potential energy (PE) + W
W = Energy at earth surface - Potential energy (PE)
But PE = 
Therefore: W = Energy at earth surface - 
Energy at earth surface (E) at an altitude of 5R = 
But 
Therefore: 
W = E - PE

Answer:
Relative age-dating involves comparing a rock layer or rock structure with other near-by layers or structures. Using the principles of superposition and cross-cutting relationships, and structures such as unconformities, one can determine the order of geological events.