There will be four unpaired electrons
The metal complex is [FeX₆]³⁻
X being the halogen ligand
X = F, CL, Br, and I
The oxidation of metal state is +3
The ground state configuration is
₂₆Fe =Is² 2s²2p⁶ 3s² 3p⁶ 3d⁶ 4s²
Metal, Fe(III) ion electron configures
₂₆Fe³⁺ = Is2 2s² 2p⁶ 3s² 3p⁶ 3d⁵
With that information, you can determine the object's speed.
Just divide the distance covered by the time to cover the distance.
If you also know the direction the object moved, then you can
determine its velocity. If you don't, then you can't.
Answer:
Fourth option
Explanation:
They're many different types of energy, from chemical and mechanical to heat and solar energy. But the two most basic types of energy are "kinetic and potential energy" or the fourth option. Kinetic energy is the energy an object has when it is in motion, while potential energy is the energy an object has when it's as rest. These two specific types of energies are the most basic and you can even convert them into many different types of energies, like heat or electrical energy.
Hope this helps.
Answer:

Explanation:
We know that charge on electron

r= 2 nm
We know that force between two charge given

Now by putting the value


We know that mass of electron
The mass of electron

F= m a
a= Acceleration of electron
a= F/m


initial velocity given that zero ,u=0


Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .