A wagon is pulled at an angle of 30 degrees to the horizontal.
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
The orbital radius is: 
Explanation:
The problem is asking to find the radius of the orbit of a satellite around a planet, given the orbital speed of the satellite.
For a satellite in orbit around a planet, the gravitational force provides the required centripetal force to keep it in circular motion, therefore we can write:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the satellite
r is the radius of the orbit
v is the speed of the satellite
Re-arranging the equation, we find:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
the answer is spiral galaxies
Answer:
cần cung cấp 70 độ vì nước sôi ở 100°C
Explanation: