<u>Answer:</u> The potential of electrode is -0.79 V
<u>Explanation:</u>
When zinc is dipped in zinc sulfate solution, the electrode formed is 
Reduction reaction follows: 
To calculate the potential of electrode, we use the equation given by Nernst equation:
![E_{(Zn^{2+}/Zn)}=E^o_{(Zn^{2+}/Zn)}-\frac{0.059}{n}\log \frac{[Zn]}{[Zn^{2+}]}](https://tex.z-dn.net/?f=E_%7B%28Zn%5E%7B2%2B%7D%2FZn%29%7D%3DE%5Eo_%7B%28Zn%5E%7B2%2B%7D%2FZn%29%7D-%5Cfrac%7B0.059%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BZn%5D%7D%7B%5BZn%5E%7B2%2B%7D%5D%7D)
where,
= electrode potential of the cell = ?V
= standard electrode potential of the cell = -0.76 V
n = number of electrons exchanged = 2
(concentration of pure solids are taken as 1)
![[Zn^{2+}]=0.1M](https://tex.z-dn.net/?f=%5BZn%5E%7B2%2B%7D%5D%3D0.1M)
Putting values in above equation, we get:

Hence, the potential of electrode is -0.79 V
D
This feature is formed at destructive boundaries where the denser plate (usually the oceanic plate) is subducted underneath the less dense plate (usually the continental plate).
Explanation:
the stress in the boundary between the two plates causes them to warp at the boundary forming a trench. This forced bending and the friction between the two plates (remember tectonic plates are very rugged) causes fissures to develop at the boundary. As the denser plate dives into the mantle, it begins to melt and the molten rock rises through the fissures. The magma erupts at the surface in several fissures forming volcanic mountains ranges along the convergent boundary.
Learn More:
brainly.com/question/13311967
brainly.com/question/13530753
brainly.com/question/13341884
brainly.com/question/949115
#LearnWithBrainly
This indicates that the reaction is exothermic meaning that it releases heat/energy
Answer:
Explanation:
- For the balanced reaction:
<em>4Fe(s) + 3O₂(g) → 2Fe₂O₃(s).</em>
It is clear that 4 mol of Fe react with 3 mol of O₂ to produce 2 mol of Fe₂O₃.
- Firstly, we need to calculate the no. of moles of 35.8 grams of Fe metal:
no. of moles of Fe = mass/molar mass = (35.8 g)/(55.845 g/mol) = 0.64 mol.
- Now, we can find the no. of moles of O₂ is needed to react with the proposed amount of Fe:
<em><u>Using cross multiplication:</u></em>
4 mol of Fe is needed to react with → 3 mol of O₂, from stichiometry.
0.64 mol of Fe is needed to react with → ??? mol of O₂.
∴ The no. of moles of O₂ needed = (3 mol)(0.64 mol)/(4 mol) = 0.48 mol.
- Finally, we can get the volume of oxygen using the information:
<em>It is known that 1 mole of any gas occupies 22.4 L at standard P and T (STP).</em>
<em></em>
<em><u>Using cross multiplication:</u></em>
1 mol of O₂ occupies → 22.4 L, at STP conditions.
0.48 mol of O₂ occupies → ??? L.
∴ The no. of liters of O₂ = (0.48 mol)(22.4 L)/(1 mol) = 10.752 L.