These are dissolved in water to form colourless solutions, and then mixed together. This mixing leads to a double displacement reaction, essentially resulting in the metals 'swapping' their places in the two compounds, producing lead (II) iodide, and potassium nitrate.
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
Molar mass of NH_3



We know.
No of moles=Given mass/Molar mass


Now
Lets write the balanced equation

- There is 2moles of Ammonia
- 3moles of H_2
- 1mole of N_2
Now

For Hydrogen



For Ammonia



For Nitrogen


Answer:
During photosynthesis, plants absorb carbon dioxide and sunlight to create fuel—glucose and other sugars—for building plant structures. This process forms the foundation of the fast (biological) carbon cycle.
The Slow Carbon Cycle. ... Atmospheric carbon combines with water to form a weak acid—carbonic acid—that falls to the surface in rain. The acid dissolves rocks—a process called chemical weathering—and releases calcium, magnesium, potassium, or sodium ions.
Answer:
7.335 moles of Cl₂ are required to react with 4.89 miles of Al.
Explanation:
Given data:
Moles of Al = 4.89 mol
Number of moles of Cl₂ required = ?
Solution:
Chemical equation:
2Al + 3Cl₂ → 2AlCl₃
Now we will compare the moles of Al and chlorine from balance chemical equation.
Al : Cl₂
2 : 3
4.89 : 3/2×4.89 =7.335 mol
Thus, 7.335 moles of Cl₂ are required to react with 4.89 miles of Al.