Just trying to personally understand this is making me shed a few tears. Good luck with finding someone to answer your question!
Explanation:
There are two ways to find out the equivalent impulse response of the system.
1. Convolution in time domain
2. Simple multiplication in Laplace domain
2nd method is efficient, easy and is less time consuming.
Step 1: Take the Laplace transform of the given three impulse response functions to convert time domain signals into s-domain
Step 2: Once we get signals in s-domain, multiply them algebraically to get the equivalent s-domain response.
Step 3: Take inverse Laplace transform of the equivalent impulse response to convert from s-domain into time domain.
Solution using Matlab:
Step 1: Take Laplace Transform
Ys1 = 1/(s + 1)
Ys2 = 1/s - exp(-s/2)/s
Ys3 = exp(-3*s)
Step 2: Multiplication in s-domain
Y = (exp(-(7*s)/2)*(exp(s/2) - 1))/(s*(s + 1))
Step 3: Inverse Laplace Transform (Final Solution in Time Domain)
h = heaviside(t - 7/2)*(exp(7/2 - t) - 1) - heaviside(t - 3)*(exp(3 - t) - 1)
load every electric circuit,regardless of where it is or how large or small, has four basic parts: an energy source (ac or dc),a conductor (wire), an electrical load (device), and at least one controller(switch)
Answer:
Given:
high temperature reservoir 
low temperature reservoir 
thermal efficiency 
The engines are said to operate on Carnot cycle which is totally reversible.
To find the intermediate temperature between the two engines, The thermal efficiency of the first heat engine can be defined as

The thermal efficiency of second heat engine can be written as

The temperature of intermediate reservoir can be defined as

Answer:
c
Explanation:
This is because many things, such as pcs, over heat