1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
3 years ago
6

Remy noticed that after oiling his skateboard wheels, it was easier to reach the speeds he needed to perform tricks. How did the

oil help? A. The oil reduced friction between the moving parts of the skateboard. B. The oil increased friction between the moving parts of the skateboard. C. The oil reduced friction between the skateboard wheels and the ground. D. The oil increased friction between the skateboard wheels and the ground.
Engineering
1 answer:
Sidana [21]3 years ago
4 0

Answer:

The oil reduced friction between the moving parts of the skateboard. ( A )

Explanation:

The oil reduced Friction between the moving parts of the skateboard and this is because the reduction in friction between moving parts causes an increase in speed.

Remy will oil the moving parts that connects the wheels of the skateboard to the Board, because this is where the most friction is found. the friction between the wheels and the ground cannot be affected by oiling the wheels

You might be interested in
A 0.25in diameter steel rod BC is securely attached between two identical 1in diameter copper rods (AB and CD). Find the torque
Helen [10]

Answer:

Tmax= 46.0 lb-in

Explanation:

Given:

- The diameter of the steel rod BC d1 = 0.25 in

- The diameter of the copper rod AB and CD d2 = 1 in

- Allowable shear stress of steel τ_s = 15ksi

- Allowable shear stress of copper τ_c = 12ksi

Find:

Find the torque T_max

Solution:

- The relation of allowable shear stress is given by:

                             τ = 16*T / pi*d^3

                             T = τ*pi*d^3 / 16

- Design Torque T for Copper rod:

                             T_c = τ_c*pi*d_c^3 / 16

                             T_c = 12*1000*pi*1^3 / 16

                             T_c = 2356.2 lb.in

- Design Torque T for Steel rod:

                             T_s = τ_s*pi*d_s^3 / 16

                             T_s = 15*1000*pi*0.25^3 / 16

                             T_s = 46.02 lb.in

- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:

                             T = min ( 2356.2 , 46.02 )

                             T = 46.02 lb-in

6 0
3 years ago
Plot the function for . Notice that the function has two vertical asymptotes. Plot the function by dividing the domain of x into
elena-s [515]
This is a very very difficult one for me, let me get back to you with the proper answer.
8 0
3 years ago
A cylindrical specimen of steel has an original diameter of 12.8 mm. It is tested in tension its engineering fracture strength i
Mama L [17]

Answer:

a) The ductility = -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) the true stress at fracture is 658.26 Mpa

Explanation:

Given that;

Original diameter d_{o} = 12.8 mm

Final diameter d_{f} = 10.7

Engineering stress  \alpha _{E} = 460 Mpa

a) determine The ductility in terms of percent reduction in area;

Ai = π/4(d_{o} )²  ; Ag = π/4(d_{f} )²

% = π/4 [ ( (d_{f} )² - (d_{o} )²) / ( π/4  (d_{o} )²) ]

= ( (d_{f} )² - (d_{o} )²) / (d_{o} )² × 100

we substitute

= [( (10.7)² - (12.8)²) / (12.8)² ] × 100

= [(114.49 - 163.84) / 163.84 ] × 100

= - 0.3012 × 100

= -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) The true stress at fracture;

True stress  \alpha _{T} = \alpha _{E} ( 1 +  E_{E} )

E_{E}  is engineering strain

E_{E}  = dL / Lo

= (do² - df²) / df² = (12.8² - 10.7²) / 10.7² = (163.84 - 114.49) / 114.49

= 49.35 / 114.49  

E_{E} = 0.431

so we substitute the value of E_{E}  into our initial equation;

True stress  \alpha _{T} = 460 ( 1 +  0.431)

True stress  \alpha _{T} = 460 (1.431)

True stress  \alpha _{T} = 658.26 Mpa

Therefore, the true stress at fracture is 658.26 Mpa

6 0
2 years ago
In your first job with a large U.S based steel company, you have been assigned to a team tasked with developing a new low carbon
nignag [31]

Answer:

Option A

Explanation:

3 0
3 years ago
Read 2 more answers
Design a 7.5-V zener regulator circuit using a 7.5-V zener specified at 10mA. The zener has an incremental resistance of rZ = 30
hram777 [196]

Answer:

The answer is given in the explanation.

Explanation:

The circuit is as indicated in the attached figure.

From the analytical description the zener voltage is given as

V_z=V_z_o+I_zr_z

Here

Vzo is the voltage at which the slope of 1/rz intersects the voltage axis it is equal to knee voltage.

The equivalent model is shown in the attached figure.

From the above equation, Vzo is calculated as

V_z_o=V_z-I_zr_z

Here Vz is given as 7.5 V

Iz is given as 10 mA

rz is given as 30 Ω

Thus the Vzo is given as

V_z_o=V_z-I_zr_z\\V_z_o=7.4-30*10*10^{-3}\\V_z_o=7.5-0.3\\V_z_o=7.2 V

The value of I_L is given as 5 mA

Now the expression of current is as

I=I_z+I_L\\I=10mA+5mA\\I=15 mA

Now the resistance is calculated as

R=\dfrac{V-Vo}{I}\\R=\dfrac{10-7.2}{15*10^{-3}}\\R=186.66

So the value of resistance is 186.66 Ω.

Considering the supply voltage is increased by 10%

V is 10-10%*10=10+1=11 so the

R=\dfrac{V-Vo}{I}\\186.66=\dfrac{11-V_o}{15*10^{-3}}\\V_o=8.2 V

Considering the supply voltage is decreased by 10%

V is 10-10%*10=10-1=9 so the

R=\dfrac{V-Vo}{I}\\186.66=\dfrac{9-V_o}{15*10^{-3}}\\V_o=6.2 V

Now if the supply voltage is 10% high and the value of Load is removed i.e I=Iz only which is 10mA

so

R=\dfrac{V-Vo}{I'}\\186.66=\dfrac{11-V_o}{10*10^{-3}}\\V_o=9.13 V

Now the largest load current thus that the supply voltage is 10% low and the current of zener is knee current thus

V_z_o=V_z-I_zr_z\\V_z_o=7.5-30*0.5*10^{-3}\\V_z_o=7.5-0.015\\V_z_o=7.485 V

R=\dfrac{V-Vo}{I'}\\186.66=\dfrac{9-7.485}{I}\\I=10.71 mA

The load voltage is 7.485 V

8 0
3 years ago
Other questions:
  • There are 20 forging presses in the forge shop of a small company. The shop produces batches of forgings requiring a setup time
    10·1 answer
  • Drag each tile to the correct box.
    15·1 answer
  • The underground storage of a gas station has leaked gasoline into the ground. Among the constituents of gasoline are benzene, wi
    12·2 answers
  • Five kg of water is contained in a piston-cylinder assembly, initially at 5 bar and 240°C. The water is slowly heated at constan
    5·1 answer
  • A bar having a length of 5 in. and cross-sectional area of 0. 7 in.2 is subjected to an axial force of 8000 lb. If the bar stret
    9·1 answer
  • The sports car has a weight of 4900 lblb and center of gravity at GG. If it starts from rest it causes the rear wheels to slip a
    13·1 answer
  • which systems engineering support discipline has the goal to ensure that support considerations are an integral part of the syst
    14·1 answer
  • Which option identifies the type of engineering technician most likely to be involved in the following scenario?
    9·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
  • During welding in the vertical position, the torch angle can be varied to control sagging.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!