1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
15

A single-cylinder pump feeds a boiler through a delivery

Engineering
1 answer:
Studentka2010 [4]3 years ago
8 0

Answer:

Net discharge per hour will be 3.5325 m^3/hr

Explanation:

We have given internal diameter d = 25 mm

Time = 1 hour = 3600 sec

So radius r=\frac{d}{2}=\frac{25}{2}=12.5mm=12.5\times 10^{-3}m

We know that area is given by

A=\pi r^2=3.14\times (12.5\times 10^{-3})^2=490.625\times 10^{-6}m^2

We know that discharge is given by Q=AV, here A is area and V is velocity

So Q=AV=490.625\times 10^{-6}\times 2=981.25\times 10^{-6}m^3/sec

So net discharge in 1 hour = 981.25\times 10^{-6}m^3/sec\times 3600=3.5325m^3/hour

You might be interested in
technician a says an out-of-round drum can cause a pulsating brake pedal. technician b says an out-of-round drum can cause the b
denis-greek [22]

According to the question of the pulsating brake pedal, both A and B are correct.

What causes brake pulsation?

Brake pulsation is mainly caused by warped rotors/brake discs. Excessive hard braking or quick stops, which can significantly overheat the discs, are the primary causes of deformed rotors. When the discs overheat, the composition of the metal disc material changes, resulting in imperfections in the metal's surface. Hotspots are noticeable irregularities. They appear as discoloured areas of the disc material, which are often bluish or blackish in appearance. The brake pedal is the pedal which you press with your foot to slow or stop a vehicle. When the driver presses the brake pedal, the system automatically delivers the appropriate pressure required to prevent colliding with the vehicle in front.

To learn more about brake pulsation
brainly.com/question/28779956

#SPj4

8 0
1 year ago
I'll mark brainliest plz help
Citrus2011 [14]

Answer:

Explanation:

There are three points in time we need to consider.  At point 0, the mango begins to fall from the tree.  At point 1, the mango reaches the top of the window.  At point 2, the mango reaches the bottom of the window.

We are given the following information:

y₁ = 3 m

y₂ = 3 m − 2.4 m = 0.6 m

t₂ − t₁ = 0.4 s

a = -9.8 m/s²

t₀ = 0 s

v₀ = 0 m/s

We need to find y₀.

Use a constant acceleration equation:

y = y₀ + v₀ t + ½ at²

Evaluated at point 1:

3 = y₀ + (0) t₁ + ½ (-9.8) t₁²

3 = y₀ − 4.9 t₁²

Evaluated at point 2:

0.6 = y₀ + (0) t₂ + ½ (-9.8) t₂²

0.6 = y₀ − 4.9 t₂²

Solve for y₀ in the first equation and substitute into the second:

y₀ = 3 + 4.9 t₁²

0.6 = (3 + 4.9 t₁²) − 4.9 t₂²

0 = 2.4 + 4.9 (t₁² − t₂²)

We know t₂ = t₁ + 0.4:

0 = 2.4 + 4.9 (t₁² − (t₁ + 0.4)²)

0 = 2.4 + 4.9 (t₁² − (t₁² + 0.8 t₁ + 0.16))

0 = 2.4 + 4.9 (t₁² − t₁² − 0.8 t₁ − 0.16)

0 = 2.4 + 4.9 (-0.8 t₁ − 0.16)

0 = 2.4 − 3.92 t₁ − 0.784

0 = 1.616 − 3.92 t₁

t₁ = 0.412

Now we can plug this into the original equation and find y₀:

3 = y₀ − 4.9 t₁²

3 = y₀ − 4.9 (0.412)²

3 = y₀ − 0.83

y₀ = 3.83

Rounded to two significant figures, the height of the tree is 3.8 meters.

7 0
3 years ago
A thick-walled tube of stainless steel having a k = 21.63 W/m∙K with dimensions of 0.0254 m ID and 0.0508 m OD is covered with 0
Aneli [31]

Answer:

Q=339.5W

T2=805.3K

Explanation:

Hi!

To solve this problem follow the steps below, the procedure is attached in an image

1. Draw the complete outline of the problem.

2.to find the heat Raise the heat transfer equation for cylinders from the inside of the metal tube, to the outside of the insulation.

3. Once the heat is found, Pose the heat transfer equation for cylinders from the inner part of the metal tube to the outside of the metal tube and solve to find the temperature

4 0
3 years ago
An office building is served by an air-cooled chiller currently operating at 115 tons (404.5 kW). The measured chilled water sup
Andrei [34K]

Answer:

B.197 gpm and 12.4 L/s

Explanation:

Given that

Load Q = 404.5 KW

Water inlet temperature= 6.1 °C

Water outlet temperature= 13.9°C

We know that specific heat for water

C_p=4.187\ \frac{KJ}{kg.K}

Now from energy balance

Q=\dot{m}C_p\Delta T

by putting the values

Q=\dot{m}C_p\Delta T

404.5=\dot{m}\times 4.187(13.9-6.1)

\dot{m}=12.38\ \frac{kg}{s}     (1 Kg/s = 15.85 gal/min)

We can say that

\dot{m}=196.31\ \frac{gal}{min}

We know that

\dot{m}=\rho\times volume\ flow\ rate

12.38=1000 x volume flow rate

volume\ flow\ rate\ = 12.38\times 10^{-3}\ \frac{m^3}{s}

So

volume flow rate = 12.38 L/s

So the option B is correct.

8 0
3 years ago
Is it possible to pass in a course if I passed in its prerequisites without understanding most about them?​
MAXImum [283]

Answer:

I don't think so but you could  remember  little bit and  you could pass.

Explanation:

4 0
1 year ago
Other questions:
  • What did the Spanish have that the Aztecs didn’t
    5·1 answer
  • What is the theoretical density in g/cm3 for Lead [Pb]?
    13·1 answer
  • A safety interlock module operates by monitoring the voltage from the
    12·1 answer
  • What is the angular velocity (in rad/s) of a body rotating at N r.p.m.?
    13·1 answer
  • DE QUE MANERA LA ALEGRIA NOS AYUDA A CONSEGIR AMIGOS <br> ≤→ω←≥
    10·1 answer
  • What are the two main what are the two main concerns in the research of fluid power efficiency?
    15·2 answers
  • What is the purpose of the graphic language?
    15·1 answer
  • ILL GIVE BRAINLIEST!!!
    11·1 answer
  • a metal rod 24mm diameter and 2m long is subjected to an axial pull of 40 kN. If the rod is 0.5mm, then find the stress-induced
    15·1 answer
  • What's the best way to find the load capacity of a crane?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!